Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (7): 1967-1984    DOI: 10.1016/j.jia.2023.01.004
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Signatures of positive selection for local adaptation of African native cattle populations: A review
Wondossen AYALEW1, 2,  WU Xiao-yun1#, Getinet Mekuriaw TAREKEGN3, 4, CHU Min1, LIANG Chun-nian1, Tesfaye SISAY TESSEMA3, YAN Ping1#

Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R.China

Department of Animal Production and Technology, Wolkite University, Wolkite P.O. Box 07, Ethiopia

Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia

Scotland’s Rural College (SRUC), Roslin Institute Building, University of Edinburgh, Edinburgh, United Kingdom (UK)

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Cattle are central to the lives and diverse cultures of African people. It has played a crucial role in providing valuable protein for billions of households and sources of income and employment for producers and other actors in the livestock value chains. The long-term natural selection of African cattle typically signals signatures in the genome, contributes to high genetic differentiations across breeds. This has enabled them to develop unique adaptive traits to cope with inadequate feed supply, high temperatures, high internal and external parasites, and diseases. However, these unique cattle genetic resources are threatened by indiscriminate cross-breeding, breed replacements with exotic cosmopolitan breeds, and climate change pressures. Although there are no functional genomics studies, recent advancements in genotyping and sequencing technologies have identified and annotated limited functional genes and causal variants associated with unique adaptive and economical traits of African cattle populations. These genome-wide variants serve as candidates for breed improvement and support conservation efforts for endangered cattle breeds against future climate changes. Therefore, this review plans to collate comprehensive information on the identified selection footprints to support genomic studies in African cattle to confirm the validity of the results and provide a framework for further genetic association and QTL fine mapping studies.
Keywords:  adaptive trait       African cattle        production traits        reproduction traits  
Received: 28 July 2022   Online: 16 January 2023   Accepted: 28 December 2022
Fund: The authors are grateful for the financial support by the Agricultural Science and Technology Innovation Program, China (CAAS-ASTIP-2014-LIHPS-01), the China Agriculture Research System of MOF and MARA (CARS- 37), the Foundation for Innovation, Groups of Basic Research in Gansu Province, China (20JR5RA580), and the Key Research and Development Programs of Science and Technology of Gansu Province, China (20YF8WA031) are duly acknowledged.
About author:  #Correspondence YAN Ping, E-mail: pingyanlz@163.com; WU Xiao-yun, E-mail: wuxiaoyun@caas.cn

Cite this article: 

Wondossen AYALEW, WU Xiao-yun, Getinet Mekuriaw TAREKEGN, CHU Min, LIANG Chun-nian, Tesfaye SISAY TESSEMA, YAN Ping . 2023. Signatures of positive selection for local adaptation of African native cattle populations: A review. Journal of Integrative Agriculture, 22(7): 1967-1984.

Abin S, Theron H E, Van Marle-Köster E. 2016. Population structure and genetic trends for indigenous African beef cattle breeds in South Africa. South African Journal of Animal Science46, 152–156.

Agyemang K. 2005. Trypanotolerant Livestock in the Context of Trypanosomiasis Intervention Strategies. Food Agricultural organization, Rome, Italy.

Ahmed A S, Rahmatalla S, Bortfeldt R, Arends D, Reissmann M, Brockmann G A. 2017. Milk protein polymorphisms and casein haplotypes in Butana cattle. Journal of Applied Genetics58, 261–271.

Anyamba A, Chretien J P, Small J, Tucker C J, Formenty P B, Richardson J H, Britch S C, Schnabel D C, Erickson R L, Linthicum K J. 2009. Prediction of a Rift Valley fever outbreak. Proceedings of the National Academy of Sciences of the United States of America106, 955–959.

Bahbahani H, Afana A, Wragg D. 2018a. Genomic signatures of adaptive introgression and environmental adaptation in the Sheko cattle of southwest Ethiopia. PLoS ONE13, e0202479.

Bahbahani H, Clifford H, Wragg D, Mbole-Kariuki M N, Van Tassell C, Sonstegard T, Woolhouse M, Hanotte O. 2015. Signatures of positive selection in East African Shorthorn zebu: A genome-wide single nucleotide polymorphism analysis. Scientific Reports5, 1–13.

Bahbahani H, Salim B, Almathen F, Al Enezi F, Mwacharo J M, Hanotte O. 2018b. Signatures of positive selection in African Butana and Kenana dairy zebu cattle. PLoS ONE13, e0190446.

Bahbahani H, Tijjani A, Mukasa C, Wragg D, Almathen F, Nash O, Akpa G N, Mbole-Kariuki M, Malla S, Woolhouse M, Sonstegard T. 2017. Signatures of selection for environmental adaptation and zebu×taurine hybrid fitness in East African Shorthorn zebu. Frontiers in Genetics8, 68.

Barendse W. 2017. Climate adaptation of tropical cattle. Annual Review of Animal Biosciences5, 133–150.

Ben-Jemaa S, Mastrangelo S, Lee S H, Lee J H, Boussaha M. 2020. Genome-wide scan for selection signatures reveals novel insights into the adaptive capacity in local North African cattle. Scientific Reports10, 1–14.

Berry D P, Cromie A R, McHugh N, Burke M, Pabiou T, MacCarthy J, Kearney J F, Buckley F, Evans R D, Purfield D, Coyne J M. 2012. New traits for dairy cattle breeding. In: Proceedings 38th International Committee for Animal Recording (ICAR), Cork, Ireland.

Biscarini F, Nicolazzi E L, Stella A, Boettcher P J, Gandini G. 2015. Challenges and opportunities in genetic improvement of local livestock breeds. Frontiers in Genetics6, 33.

Biyazen H, Duguma R, Asaye M. 2014. Trypanosomosis, its risk factors, and anaemia in cattle population of Dale Wabera district of Kellem Wollega zone, Western Ethiopia. Journal of Veterinary Medicine14, doi: 10.1155/2014/374191.

Bunning H, Wall E, Chagunda M G, Banos G, Simm G. 2019. Heterosis in cattle crossbreeding schemes in tropical regions: Meta-analysis of effects of breed combination, trait type, and climate on level of heterosis. Journal of Animal Science97, 29–34.

Cesarani A, Sorbolini S, Criscione A, Bordonaro S, Pulina G, Battacone G, Marletta D, Gaspa G, Macciotta N P P. 2018. Genome-wide variability and selection signatures in Italian island cattle breeds. Animal Genetics49, 371–383.

Cheruiyot E K, Bett R C, Amimo J O, Zhang Y, Mrode R, Mujibi F D N. 2018. Signatures of selection in admixed dairy cattle in Tanzania. Frontiers in Genetics9, 1–15.

Cui C Y, Schlessinger D. 2015. Eccrine sweat gland development and sweat secretion. Expermental Dermatology24, 644–650.

Dalvit C, Saccà E, Cassandro M, Gervaso M, Pastore E, Piasentier E. 2008. Genetic diversity and variability in Alpine sheep breeds. Small Ruminant Research80, 45–51.

Dayo G K, Thevenon S, Berthier D, Moazami-Goudarzi K, Denis C, Cuny G, Eggen A, Gautier M. 2009. Detection of selection signatures within candidate regions underlying trypanotolerance in outbred cattle populations. Molecular Ecology18, 1801–1813.

Delgado C. 2005. Rising demand for meat and milk in developing countries: Implications for grasslands-based livestock production. In: McGilloway M D, ed., Grassland: A Global Resource. Wageningen Academic Publishers, Wageningen. pp. 29–39.

d’Ieteren G D, Authié E, Wissocq N, Murray M. 1998. Trypanotolerance, an option for sustainable livestock production in areas at risk from trypanosomosis. Revue Scientifique et Technique (International Office of Epizootics), 17, 154–175.

Dzavo T, Zindove T J, Dhliwayo M, Chimonyo M. 2019. Effects of drought on cattle production in sub-tropical environments. Tropical Animal Health and Production51, 669–675.

Edea Z, Bhuiyan M S A, Dessie T, Rothschild M F, Dadi H, Kim K S. 2015. Genome-wide genetic diversity, population structure and admixture analysis in African and Asian cattle breeds. Animal9, 218–226.

Eskezia B, Desta A. 2016. Review on the impact of ticks on livestock health and productivity. Journal of Biology Agriculture Healthcare6, 1–7.

FAO (Food and Agriculture Organization). 2015. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture. In: Scherf B D, Pilling D, eds., Country Report on the State of the World’s Animal Genetic Resources for Food and Agriculture. Food and Agriculture Organization, Rome, Italy.

Fernandez J, Villanueva B, Pong-Wong R, Toro M A. 2005. Efficiency of the use of pedigree and molecular marker information in conservation programs. Genetics170, 1313–1321.

Foster A, Jackson A, D´Alteiro G L. 2007. Skin diseases of South American Camelids. In Practice29, 216–222.

Franzin A M, Maruyama S R, Garcia G R, Oliveira R P, Ribeiro J M C, Bishop R, Maia A A M, Moré D D, Ferreira B R, Santos I K F D M. 2017. Immune and biochemical responses in skin differ between bovine hosts genetically susceptible and resistant to the cattle tick Rhipicephalus microplus. Parasites and Vectors10, 1–24.

Gasparin G, Miyata M, Coutinho L L. 2007. Mapping of quantitative trait loci controlling tick [Rhipicephalus (Booph-ilusmicroplus] resistance on bovine chromosomes 5, 7 and 14. Animal Genetics38, 453–459.

Gaughan J B, Sejian V, Mader T L, Dunshea F R. 2019. Adaptation strategies: Ruminants. Animal Frontiers9, 47–53.

Gautier M, Flori L, Riebler A, Jaffrézic F, Laloé D, Gut I, Moazami-Goudarzi K, Foulley J L. 2009. A whole genome Bayesian scan for adaptive genetic divergence in west African cattle. BMC Genomics10, 1–18.

Goddard M E, Hayes B J. 2009. Mapping genes for complex traits in domestic animals and their use in breeding pro-grammes. Natture Review Genetics10, 381–391.

Guillemot J, Seidah N G. 2015. PACE4 (PCSK6): Another proprotein convertase link to iron homeostasis? Haematologica100, e377.

Gupta M, Kumar S, Dangi S, Jangir B L. 2013. Physiological, biochemical and molecular responses to thermal stress in goats. International Journal of Livestock Research3, 27–38.

Hansen P J. 2004. Physiological and cellular adaptations of zebu cattle to thermal stress. Animal Reproduction Science82, 349–360.

Hegarty R S. 2004. Genotype differences and their impact on digestive tract function of ruminants: A review. Journal of Experimental Agriculture44, 459–467.

Herrero M, Grace D, Njuki J, Johnson N, Enahoro D, Silvestri S, Rufino M C. 2013. The roles of livestock in deve oping countries. Animal7, 3–18.

Houle D, Govindaraju D R, Omholt S. 2010. Phenomics: The next challenge. Natture Review Genetics11, 855–866.

Hurtado O J, Giraldo-Ríos C. 2018. Economic and health impact of the ticks in production animals: Ticks and tick-borne pathogens, doi: 10.5772/intechopen.81167.

Ibeagha-Awemu E M, Peters S O, Bemji M N, Adeleke M A, Do D N. 2019. Leveraging available resources and stakeholder involvement for improved productivity of African livestock in the era of genomic breeding. Frontiers in Genetics10, 357.

Indu S, Pareek A. 2015. A review: Growth and physiological adaptability of sheep to heat stress under semi-arid envi-ronment. International Journal of Emerging Trends of Science and Technology2, 3188–3198.

Johnsson M. 2018. Integrating selection mapping with genetic mapping and functional genomics. Frontiers in Genetics9, 603.

Jorjani H. 2006. International genetic evaluation for female fertility traits. Interbull Bulletin35, 42–46.

Juo A S, Franzluebbers K. 2003. Tropical Soils: Properties and Management for Sustainable Agriculture. Oxford University Press, UK.

Kadarmideen H N, Thompson R, Coffey M P, Kossaibati M A. 2003. Genetic parameters and evaluations from single- and multiple-trait analysis of dairy cow fertility and milk production. Livestock Production Science81, 183–195.

Kim J, Hanotte O, Mwai O A, Dessie T, Bashir S, Diallo B, Agaba M, Kim K, Kwak W, Sung S, Seo M. 2017. The genome landscape of indigenous African cattle. Genome Biology18, 1–14.

Kimaro E G, Mor S M, Toribio J A L. 2018. Climate change perception and impacts on cattle production in pastoral communities of northern Tanzania. Pastoralism8, 1–16.

Klar J, Hisatsune C, Baig S M, Tariq M, Johansson A C, Rasool M, Malik N A, Ameur A, Sugiura K, Feuk L, Mikoshiba K. 2014. Abolished InsP(3)R2 function inhibits sweat secretion in both humans and mice. The Journal of Clinical Investigation124, 4773–4780.

Kongsuwan K, Josh P, Colgrave M L, Bagnall N H, Gough J, Burns B, Pearson R. 2010. Activation of several key components of the epidermal differsentiation pathway in cattle following infestation with the cattle tick, Rhipicephalus (BoophilusmicroplusInternational Journal of Parasitology40, 499–507.

Kooverjee B B, Soma P, Van Der Nest M A, Scholtz M M, Neser F W. 2022. Selection signatures in south African Nguni and Bonsmara cattle populations reveal genes relating to environmental adaptation. Frontiers in Genetics13, https://doi.org/10.3389/fgene.2022.909012.

Kosgey I S, Okeyo A M. 2007. Genetic improvement of small ruminants in low input, smallholder: technical and infra-structural issues. Small Ruminant Research70, 76–88.

Listrat A, Lebret B, Louveau I, Astruc T, Bonnet M, Lefaucheur L, Picard B, Bugeon J. 2016. How muscle structure and composition influence meat and flesh quality. The Scientific World Journal3182746, doi: 10.1155/2016/3182746.

Lobell D B, Burke M B, Tebaldi C, Mastrandrea M D, Falcon W P, Naylor R L. 2008. Prioritizing climate change adaptation needs for food security in 2030. Science319, 607–610.

Madalcho E B. 2019. A Study on the prevalence of bovine trypanosomiasis and its associated risk factors in Tarcha Zuria District, Dawuro Zone. International Journal of Research Studies in Bioscience7, 4–10.

Maki J M, Sormunen R, Lippo S, Kaarteenaho-Wiik R, Soininen R, Myllyharju J. 2005. Lysyl oxidase is essential for normal development and function of the respiratory system and for the integrity of elastic and collagen fibers in various tissues. The American Journal of Pathology167, 927–936.

Makina S O, Muchadeyi F C, van Marle-Köster E, Taylor J F, Makgahlela M L, Maiwashe A. 2015. Genome-wide scan for selection signatures in six cattle breeds in South Africa. Genetics Selection and Evolution47, 1–14.

Mapholi N O, Maiwashe A, Matika O, Riggio V, Bishop S C, MacNeil M D, Banga C, Taylor J F, Dzama K. 2016. Genome-wide association study of tick resistance in South African Nguni cattle. Ticks and Tick-Borne Diseases7, 487–497.

Mapholi N O, Marufu M C, Maiwashe A, Banga C B, Muchenje V, MacNeil M D, Dzama K. 2014. Towards a genomics approach to tick (Acari: Ixodidae) control in cattle: A review. Ticks and Tick-Borne Diseases5, 475–483.

Van Marle-Köster E, Visser C, Berry D P. 2013. A review of genomic selection - Implications for the South African beef and dairy cattle industries. South African Journal of Animal Science43, 1–17.

Marshall K, Gibson J P, Mwai O, Mwacharo J M, Haile A, Getachew T, Mrode R, Kemp S J. 2019. Livestock genomics for developing countries - African examples in practice. Fronteirs in Genetics10, 297.

Marufu M C, Qokweni L, Chimonyo M, Dzama K. 2011. Relationships between tick counts and coat characteristics in Nguni and Bonsmara cattle reared on semiarid rangelands in South Africa. Ticks and Tick-Borne Diseases2, 172–177.

Masih I, Maskey S, Mussá F E F, Trambauer P A. 2014. Review of droughts on the African continent: a geospatial and long-term perspective. Hydrology and Earth System Sciences18, 3635–3649.

McFarlane K, Wilson G A, Nishi J S. 2006. Management Strategies for Conservation of Genetic Diversity in Wood Bison (Bison Bison Athabascae). File Report 135. University of Alberta, Alberta, Canada.

McManus C M, Paludo G R, Louvandini H, Gugel R, Sasaki L C B, Paiva S R. 2009. Heat tolerance in Brazilian sheep: Physiological and blood parameters. Tropical Animal Health and Production41, 95–101.

Mekonnen Y A, Gültas M, Effa K, Hanotte O, Schmitt A O. 2019. Identification of candidate signature genes and key regulators associated with Trypanotolerance in the Sheko Breed. Frontiers in Genetics10, 095.

Meltzer M I. 1996. A possible explanation of the apparent breed-related resistance in cattle to Bont tick (Amblyomma hebraeum) infestations. Veterinary Parasitology67, 275–279.

Menta P R, Machado V S, Piñeiro J M, Thatcher W W, Santos J E, Vieira-Neto A. 2022. Heat stress during the transition period is associated with impaired production, reproduction, and survival in dairy cows. Journal of Dairy Science105, 4474–4489

Meuwissen T, Hayes B, Goddard M. 2013. Accelerating improvement of livestock with genomic selection. Annual Review Animal Bioscience1, 221–237.

Mirkena T, Duguma G, Haile A, Tibbo M, Okeyo A, Wurzinger M, Sölkner J. 2010. Genetics of adaptation in domestic farm animals: A review. Livestock Science132, 1–12.

Mrode R, Ojango J M K, Okeyo A M, Mwacharo J M. 2019. Genomic selection and use of molecular tools in breeding programs for indigenous and crossbred cattle in developing countries: Current status and future prospects. Frontiers in Genetics9, 694.

Murray M, Dexter T M. 1988. Anaemia in bovine African trypanosomiasis. A review. Acta Tropica45, 389–432.

Murray M, Trail J C, Davis C E, Black S J. 1984. Genetic resistance to African Trypanosomiasis. Journal of Infectious Diseases149, 311–319.

Mwai O, Hanotte O, Kwon Y J, Cho S. 2015. African indigenous cattle: unique genetic resources in a rapidly changing world. Asian–Australas Journal of Animal Science28, 911.

Nakamura Y, Kanemarum K, Fukami K. 2013. Physiological functions of phospholipase Cδ1 and phospholipase Cδ3. Advances in Biological Regulation53, 356–362.

Nanaei H A, Qanatqestani M D, Esmailizadeh A. 2020. Whole-genome resequencing reveals selection signatures as-sociated with milk production traits in African Kenana dairy zebu cattle. Genomics112, 880–885.

Noyes H, Brass A, Obara I, Anderson S, Archibald A L, Bradley D G, Fisher P, Freeman A, Gibson J, Gicheru M, Hall L. 2011. Genetic and expression analysis of cattle identifies candidate genes in pathways responding to Trypanosoma congolense infection. Proceedings of the National Academy of Sciences of the United States of America108, 9304–9309.

Nyangiwe N, Yawa M, Muchenje V. 2018. Driving forces for changes in geographic range of cattle ticks (Acari: Ixodidae) in Africa: A review. South African Journal of Animal Science48, 829–841.

O’Gorman G M, Park S D, Hill E W, Meade K G, Coussens P M, Agaba M, Naessens J, Kemp S J, MacHugh D E. 2009. Transcriptional profiling of cattle infected with Trypanosoma congolense highlights gene expression signatures underlying trypanotolerance and trypanosusceptibility. BMC Genomics10, 1–21.

Olwoch J M, Reyers B, Engelbrecht F A, Erasmus B F. 2008. Climate change and the tick-borne disease, Theileriosis (East Coast fever) in sub-Saharan Africa. Journal of Arid Environments72, 108–120.

Paguem A, Abanda B, Achukwi M D, Baskaran P, Czemmel S, Renz A, Eisenbarth A. 2020. Whole genome char-acterization of autochthonous Bos taurus brachyceros and introduced Bos indicus indicus cattle breeds in Cameroon regarding their adaptive phenotypic traits and pathogen resistance. BMC Genetics21, 1–15.

Paling R W, Dwinger R H. 1993. Potential of trypanotolerance as a contribution to sustainable livestock production in tsetse affected Africa. Veterinary Quarterly15, 60–67.

Palmer M A, Reidy Liermann C A, Nilsson C, Flörke M, Alcamo J, Lake P S, Bond N. 2008. Climate change and the world’s river basins: anticipating management options. Frontiers in Ecololgy and Environment6, 81–89.

Paula-Lopes F F, Lima R S D, Satrapa R A, Barros C M. 2013. Physiology and endocrinology symposium: Influence of cattle genotype (Bos indicus vsBos taurus) on oocyte and preimplantation embryo resistance to increased temperature. Journal of Animal Science91, 1143–1153.

Pu L, Zhang L C, Zhang J S, Song X, Wang L G, Liang J, Zhang Y B, Liu X, Yan H, Zhang T, Yue J W. 2016. Porcine MAP3K5 analysis: molecular cloning, characterization, tissue expression pattern, and copy number variations associated with residual feed intake. Genetic Molecular Research12, 15.

Randhawa I A S, Khatkar M S, Thomson P C, Raadsma H W. 2016. A meta-assembly of selection signatures in cattle. PLoS ONE11, e0153013.

Rashamol V P, Sejian V. 2018. Climate resilient livestock production: Way forward. Journal of Dairy and Veterinary Sciences5, 5556673.

Rege J E O. 1999. The state of African cattle genetic resources I. Classification framework and identification of threatened and extinct breeds. Animal Genetic Resources25, 1–25.

Rege J E O, Gibson J P. 2003. Animal genetic resources and economic development: Issues in relation to economic valuation. Ecological Economics45, 319–330.

Rege J E O, Marshall K, Notenbaert A, Ojango J M K, Okeyo A M. 2011. Pro-poor animal improvement and breeding - What can science do? Livestock Science136, 15–28.

Rege J E O, Tawah C. 1999. The state of African cattle genetic resources II. Geographical distribution, characteristics and uses of present-day breeds and strains. Animal Genetic Resources26, 1–25.

Rewe T O, Herold P, Kahi A K, Zárate A V. 2009. Breeding indigenous cattle genetic resources for beef production in Sub-Saharan Africa. Outlook Agriculture38, 317–326.

Rewe T O, Peixoto M G C D, Cardoso V L, Vercesi Filho A E, El Faro L, Strandberg E. 2015. Gir for the Giriama: The case for zebu dairying in the tropics - A review. Livestock Research for Rural Development27, 150.

Rios Utrera A, Van Vleck L D. 2004. Heritability estimates for carcass traits of cattle: A review. Genetics and Molecular Research3, 380–394.

Rojas-Downing M M, Nejadhashemi A P, Abouali M, Daneshvar F, Al Masraf S A D, Herman M R, Harrigan T, Zhang Z. 2018. Pasture diversification to combat climate change impacts on grazing dairy production. Mitigation and Adaptation Strategies for Global Change23, 405–431.

Rouault T A. 2006. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nature Chemical Biology2, 406–414.

Saravanan K A, Panigrahi M, Kumar H, Parida S, Bhushan B, Gaur G K, Dutt T, Mishra B P, Singh R K. 2021. Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics113, 955–963.

Scholtz M M, Theunissen A. 2010. The use of indigenous cattle in terminal cross-breeding to improve beef cattle pro-duction in Sub-Saharan Africa. Animal Genetic Resource Information46, 33–39.

Sejian V, Bhatta R, Gaughan J B, Dunshea F R, Lacetera N. 2018. Adaptation of animals to heat stress. Animal12, s431–s444.

Serão N V, González-Peña D, Beever J E, Faulkner D B, Southey B R, Rodriguez-Zas S L. 2013. Single nucleotide polymorphisms and haplotypes associated with feed efficiency in beef cattle. BMC Genetics14, 1–20.

Shahbazkia H R, Aminlari M, Cravador A. 2012. Association of polymorphism of the β(1,4)-galactosyltransferase-I gene with milk production traits in Holsteins. Molecular Biology Reports39, 6715–6721.

Shyma K P, Gupta J P, Singh V. 2015. Breeding strategies for tick resistance in tropical cattle: a sustainable approach for tick control. Journal of Parasitic Diseases39, 1–6.

Da Silva A S, Hoehne L, Tonin A A, Zanette R A, Wolkmer P, Costa M M, Moraes D P, Flores É M, Santurio J M, Lopes S T, Monteiro S G. 2009. Trypanosoma evansi: Levels of copper, iron and zinc in the bloodstream of infected cats. Expermetal Parasitology123, 35–38.

Smedley R, Mullaney T, Rumbeiha W. 2009. Copper-associated hepatitis in Labrador retrievers. Veterinary Pathology46, 484–490.

Smetko A, Soudre A, Silbermayr K, Müller S, Brem G, Hanotte O, Boettcher P J, Stella A, Mészáros G, Wurzinger M, Curik I. 2015. Trypanosomosis: Potential driver of selection in African cattle. Frontoers in Genetics6, 137.

Strydom P E, Frylinck L, Smith M F. 2011. Variation in meat quality characteristics between Sanga (Bos taurus africanus) and Sanga-derived cattle breeds and between Sanga and Brahman (Bos indicus). Animal5, 483–491.

Strydom P E, Frylinck L, Van der Westhuizen J, Burrow H M. 2008. Growth performance, feed efficiency and carcass and meat quality of tropically adapted breed types from different farming systems in South Africa. Australian Journal of Experimental Agriculture48, 599–607.

Strydom P E, Naude R T, Smith M F, Scholtz M M, Van Wyk J B. 2000. Characterization of indigenous African cattle breeds in relation to carcass characteristics. Animal Science70, 241–252.

Taye M, Kim J, Yoon S H, Lee W, Hanotte O, Dessie T, Kemp S, Mwai O A, Caetano-Anolles K, Cho S, Oh S J. 2017a. Whole genome scan reveals the genetic signature of African Ankole cattle breed and potential for higher quality beef. BMC Genetics18, 1–14.

Taye M, Lee W, Caetano-Anolles K, Dessie T, Cho S, Jong Oh S, Lee H K, Kim H. 2018. Exploring the genomes of East African indicine cattle breeds reveals signature of selection for tropical environmental adaptation traits. Cogent Food & Agriculture4, 1552552.

Taye M, Lee W, Caetano-Anolles K, Dessie T, Hanotte O, Mwai O A, Kemp S, Cho S, Oh S J, Lee H K, Kim H. 2017b. Whole genome detection of signature of positive selection in African cattle reveals selection for thermotolerance. Animal Science Journal88, 1889–1901.

Taye M, Lee W, Jeon S, Yoon J, Dessie T, Hanotte O, Mwai O A, Kemp S, Cho S, Oh S J, Lee H K. 2017c. Exploring evidence of positive selection signatures in cattle breeds selected for different traits. Mammalian Genome28, 528–541.

Theurl I, Hilgendorf I, Nairz M, Tymoszuk P, Haschka D, Asshoff M, He S, Gerhardt L, Holderried T A, Seifert M, Sopper S. 2016. On-demand erythrocyte disposal and iron recy- cling requires transient macrophages in the liver. Nature Medcine22, 945–951.

Thornton P K. 2010. Livestock production: Recent trends, future prospects. Philosophical Transactions of the Royal Society B (Biological Sciences), 365, 2853–2867.

Tijjani A, Salim B, da Silva M V, Eltahir H A, Musa T H, Marshall K, Hanotte O, Musa H H. 2022. Genomic signatures for drylands adaptation at gene-rich regions in African zebu cattle. Genomics114, 110423.

Tijjani A, Utsunomiya Y T, Ezekwe A G, Nashiru O, Hanotte O. 2019. Genome sequence analysis reveals selection signatures in endangered trypanotolerant west African Muturu cattle. Frontiers in Genetics10, 442.

Troncy P M, Itard J, Morel P C. 1981. Summary of Tropical Veterinary Parasitology. Institute of Animal Husbandry and Veterinary Medicine of Tropical Countries, Paris, France.

Vonk W I, Kakkar V, Bartuzi P, Jaarsma D, Berger R, Hofker M H, Klomp L W, Wijmenga C, Kampinga H H, van de Sluis B. 2014. The copper metabolism MURR1 domain protein 1 (COMMD1) modulates the aggregation of misfolded protein species in a client-specific manner. PLoS ONE9, e92408.

Wall E, Brotherstone S, Woolliams J A, Banos G, Coffey M P. 2003. Genetic evaluation of fertility using direct and correlated traits. Journal of Dairy Science86, 4093–4102.

Zhang H, Wang Z, Wang S, Li H. 2012. Progress of genome wide association study in domestic animals. Journal of Animal Science and Biotechnology3, 1–10.

Zhao F, McParland S, Kearney F, Du L, Berry D P. 2015. Detection of selection signatures in dairy and beef cattle using high-density genomic information. Genetics Selection and Evolution47, 1–12.

Zwane A A, Nxumalo K S, Makgahlela M L, Van Marle-Koster E, Maiwashe N. 2021. Gene-set enrichment analysis of selective sweeps reveals phenotypic traits in Nguni cattle. South African Journal of Animal Science51, 761–777.

Zwane A A, Schnabel R D, Hoff J, Choudhury A, Makgahlela M L, Maiwashe A, Van Marle-Koster E, Taylor J F. 2019. Genome-wide SNP discovery in indigenous cattle breeds of South Africa. Frontiers in Genetics10, 273.

No related articles found!
No Suggested Reading articles found!