Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (1): 195-201    DOI: 10.1016/j.jia.2022.08.113
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Development of a high-efficiency sex pheromone formula to control Euproctis pseudoconspersa

LI Zhao-qun1, YUAN Ting-ting1, CUI Shao-wei1, ZHAO Ying-jie1, SHAO Yuan-hai2, SHANG Jian-nong3, LUO Zong-xiu1, CAI Xiao-ming1, BIAN Lei1, CHEN Zong-mao1

1 Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, P.R.China

2 Tea Variety Research Institute of Wuxi, Wuxi 214122, P.R.China

3 Agricultural Technology Extension Service Center of Hangzhou Xihu District, Hangzhou 310063, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

研究茶毛虫主要性信息素组分的手性对映体和次要组分的田间引诱活性,明确其最佳配比,可为茶毛虫的高效性诱杀技术研发提供理论基础。本研究利用昆虫触角电位技术测定了茶毛虫雄蛾触角对主要性信息组分的两个手性对映体(S)-10,14-二甲基十五醇异丁酸酯和(R)-10,14-二甲基十五醇异丁酸酯及次要组分14-甲基十五醇异丁酸酯的电生理活性。通过田间诱捕试验研究3个单组分及其不同配比对茶毛虫雄蛾的引诱活性,并比较了其最优配比与商品化产品的田间引诱活性。(1(R)-10,14-二甲基十五醇异丁酸酯的电生理活性显著高于(S)-10,14-二甲基十五醇异丁酸酯,14-甲基十五醇异丁酸酯的电生理活性也具有一定的电生理活性;(2(R)-10,14-二甲基十五醇异丁酸酯的田间引诱活性显著高于(S)-10,14-二甲基十五醇异丁酸酯和外消旋体10,14-二甲基十五醇异丁酸酯;(314-甲基十五醇异丁酸酯虽无田间引诱活性,但其可以显著的提高其他两个组分的引诱活性,(4(R)-10,14-二甲基十五醇异丁酸酯的田间诱捕活性随浓度增加而增强,14-甲基十五醇异丁酸酯对 (R)-10,14-二甲基十五醇异丁酸酯诱捕活性的增强作用随浓度增加先增强后降低,性信息素配比以R)-10,14-二甲基十五醇异丁酸酯和4-甲基十五醇异丁酸酯含量分别为0.75mg 0.1mg时引诱活性最强,显著优于现有商品化产品。以往的研究报道显示,中国种群茶毛虫性信息素仅有10,14-二甲基十五醇异丁酸酯一个组分,且该组分的两个手性对映体田间引诱活性差异不显著。本研究通过系统的研究,明确了(R)-10,14-二甲基十五醇异丁酸酯是茶毛虫的主要性信息素组分,14-甲基十五醇异丁酸酯可能是茶毛虫次要组分。在此基础上,获得了一个最佳的茶毛虫性信息素配比,可用于研发高效茶毛虫性诱杀技术



Abstract  

The tea tussock moth (Euproctis pseudoconspersa) is one of the most destructive chewing pests in tea plantations and causes a serious allergic reaction on the skin of tea plantation workers.  The sex pheromone components of its Japanese population were first identified as 10,14-dimethylpentadecyl isobutyrate (10Me14Me-15:iBu) and 14-methylpentadecyl isobutyrate (14Me-15:iBu), with a stereogenic center.  Only 10Me14Me-15:iBu has been identified in the Chinese Epseudoconspersa population.  However, field tests have shown that 10Me14Me-15:iBu cannot meet the demand of effective pest control in China.  To develop a high-efficiency Epseudoconspersa sex pheromone formula, electroantennogram (EAG) recordings of (S)- and (R)-enantiomers of 10Me14Me-15:iBu and 14Me-15:iBu were obtained in the present study.  The results demonstrated that the EAG responses of male antennae to (R)-enantiomers were significantly higher than responses to the (S)-enantiomers, and 14Me-15:iBu also elicited EAG activity.  Field tests showed that the catch numbers of male moths by (R)-enantiomers were significantly higher (P<0.05) than those of (S)-enantiomers.  Addition of 14Me-15:iBu significantly increased the catch numbers of both the (S)- and (R)-enantiomers.  The efficient pheromone formula containing 0.75 mg (R)-10Me14Me-15:iBu and 0.1 mg 14Me-15:iBu showed significantly higher attractiveness than commercial pheromone products.  Our study demonstrated that (R)-10Me14Me-15:iBu was the major sex pheromone component of Epseudoconspersa, and 14Me-15:iBu might be the minor sex pheromone component.  Furthermore, a high-efficiency sex pheromone formula for Epseudoconspersa control was defined in this study.

Keywords:  Euproctis pseudoconspersa        sex pheromone       chirality       electroantennogram  
Received: 21 December 2021   Accepted: 28 February 2022
Fund: 

This study was funded by the National Key R&D Program of China (2021YFD1601100), the Key Research and Development Program of Zhejiang Province, China (2019C02033), the National Natural Science Foundation of China (31701795), and the earmarked fund for the China Agriculture Research System  (CARS-19).

About author:  Correspondence LI Zhao-qun, E-mail: zqli@tricaas.com

Cite this article: 

LI Zhao-qun, YUAN Ting-ting, CUI Shao-wei, ZHAO Ying-jie, SHAO Yuan-hai, SHANG Jian-nong, LUO Zong-xiu, CAI Xiao-ming, BIAN Lei, CHEN Zong-mao. 2023. Development of a high-efficiency sex pheromone formula to control Euproctis pseudoconspersa. Journal of Integrative Agriculture, 22(1): 195-201.

Ando T, Inomata S, Yamamoto M. 2004. Lepidopteran sex pheromones. In: Schulz S, ed., The Chemistry of Pheromones and Other Semiochemicals. I. vol. 239. Springer, Berlin Heidelberg, Germany. pp. 51–96.
Ando T, Yamakawa R. 2015. Chiral methyl-branched pheromones. Natural Product Reports, 32, 1007–1041.
Chen Z M, Lin Z. 2015. Tea and human health: Biomedical functions of tea active components and current issues. Journal of Zhejiang University Science (B), 16, 87–102.
Cui G Z, Zhu J J. 2016. Pheromone-based pest management in China: Past, present, and future prospects. Journal of Chemical Ecology, 42, 557–570.
Ichikawa A, Yasuda T, Wakamura S. 1995. Absolute-configuration of sex-pheromone for tea tussock moth, Euproctis-pseudoconspersa (strand) via synthesis of (R)-10,14-dimethyl-1-pentadecyl and (S)-10,14-dimethyl-1-pentadecyl isobutyrates. Journal of Chemical Ecology, 21, 627–634.
Jurenka R A. 2021. 2-Lepidoptera: Female sex pheromone biosynthesis and its hormonal regulation. In: Gary J B, Richard G V, eds., Insect Pheromone Biochemistry and Molecular Biology. 2nd ed. Elsevier, London, United Kingdom. pp. 13–88.
Knight A L, Stelinski  L L, Hebert V, Gut L, Light D, Brunner J. 2012. Evaluation of novel semiochemical dispensers simultaneously releasing pear ester and sex pheromone for mating disruption of codling moth (Lepidoptera: Tortricidae). Journal of Applied Entomology, 136, 79–86.
Liebhold A M, Tobin P C. 2008. Population ecology of insect invasions and their management. Annual Review of Entomology, 53, 387–408.
Lofstedt C, Wahlberg N, Millar J G. 2016. Evolutionary patterns of pheromone diversity in Lepidoptera. In: Jeremy D A, Ring T C, eds., Pheromone Communication in Moths: Evolution, Behavior, and Application. Elsevier, London, United Kingdom. pp. 43–78.
Luo Z X, Magsi D H, Li Z Q, Cai X M, Bian L, Liu Y, Xin Z J, Xiu C L, Chen Z M. 2020. Development and evaluation of sex pheromone mass trapping technology for Ectropis grisescens: A potential integrated pest management strategy. Insects, 11, 15.
Ma T, Xiao Q, Yu Y G, Wang C, Zhu C Q, Sun Z H, Chen X Y, Wen X J. 2016. Analysis of tea geometrid (Ectropis grisescens) pheromone gland extracts using GC-EAD and GCxGC/TOFMS. Journal of Agricultural and Food Chemistry, 64, 3161–3166.
Mori K. 2007. Significance of chirality in pheromone science. Bioorganic & Medicinal Chemistry, 15, 7505–7523.
Wakamura S, Ichikawa A, Yasuda T, Arakaki N, Fukumoto T. 1996. EAG and field responses of the male tea tussock moth, Euproctis pseudoconspersa (Strand) (Lepidoptera: Lymantriidae) to (R)- and (S)-enantiomers and racemic mixture of 10,14-dimethylpentadecyl isobutyrate. Applied Entomology and Zoology, 31, 623–625.
Wakamura S, Yasuda T, Ichikawa A, Fukumoto T, Mochizuki F. 1994. Sex attractant pheromone of the tea tussock moth, Euproctis pseudoconspersa (Strand) (Lepidoptera: Lymantriidae): Identification and field attraction. Applied Entomology and Zoology, 29, 403–411.
Wang X, Gu Q, Zhang W, Jiang H, Chen S, Smagghe G, Niu J, Wang J J. 2021. Prevalence of a novel bunyavirus in tea tussock moth Euproctis pseudoconspersa (Lepidoptera: Lymantriidae). Journal of Insect Science, 21, 5.
Wang Y M, Ge F, Liu X H, Feng F, Wang L J. 2005. Evaluation of mass-trapping for control of tea tussock moth Euproctis pseudoconspersa (Strand) (Lepidoptera: Lymantriidae) with synthetic sex pheromone in south China. International Journal of Pest Management, 51, 289–295.
Witzgall P, Kirsch P, Cork A. 2010. Sex pheromones and their impact on pest management. Journal of Chemical Ecology, 36, 80–100.
Yan Q, Liu X L, Wang Y L, Tang X Q, Shen Z J, Dong S L, Deng J Y. 2019. Two sympatric Spodoptera species could mutually recognize sex pheromone components for behavioral isolation. Frontiers in Physiology, 10, 1256.
Zhao C, Millar J G, Wen Z, Wang S, Wang X, Zhu Y. 1996. Isolation, identification and synthesis of the female sex pheromone of the tea tussock moth, Euproctis pseudoconspersa (Lepidoptera: Lymantriidae). Entomologia Sinica, 3, 58–69. (in Chinese) 

[1] YAN Jun-jie, MEI Xiang-dong, FENG Jia-wen, LIN Zhi-xu, Stuart REITZ, MENG Rui-xia, GAO Yu-lin. Optimization of the sex pheromone-based method for trapping field populations of Phthorimaea operculella (Zeller) in South China[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2727-2733.
No Suggested Reading articles found!