Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (12): 3170-3185    DOI: 10.1016/S2095-3119(21)63638-9
Special Issue: 园艺-分子生物合辑Horticulture — Genetics · Breeding
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Overexpression of the MADS-box gene SlMBP21 alters leaf morphology and affects reproductive development in tomato
WANG Yun-shu, GUO Peng-yu, ZHANG Jian-ling, XIE Qiao-li, SHEN Hui, HU Zong-li*, CHEN Guo-ping*
Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

果实产量是番茄最重要的园艺特性。根据前人的报道,SEPMBATA型MADS-box基因SlMBP21具有控制番茄花梗离区形成以及调控萼片大小的功能。然而,我们构建过表达的SlMBP21转基因番茄植株,发现这些转基因植株显示出卷曲的叶子,扭曲和开放的雄蕊,产量降低,并产生了小而轻的种子。我们对功能获得型表型和基因表达水平的研究表明SlMBP21基因在调控叶片形态、花和花序结构、种子大小以及果实产量方面起着重要作用。番茄中SlMBP21的过表达导致叶片卷曲,叶片少,这是由于其对关键的叶片极性相关基因的调控导致上、下轴细胞生长不平衡所致。花和花序结构的缺陷导致果实减少。此外,我们发现了SlMBP21通过抑制参与确定番茄种子发育相关基因的表达并与其他一些MADS-box蛋白(S1AGL11,TAGL1和SlMBP3)相互作用来控制种子大小。因此,这些结果表明SlMBP21的过表达对植物生长和发育,特别是对番茄的果实产量造成多重损害。




Abstract  Fruit yield is the most important horticultural trait of tomato.  SlMBP21, a SEPALLATA subclass MADS-box gene has been reported to have functions in regulating pedicel abscission zone identity and development and controlling sepal size in tomato.  However, we generated transgenic tomato plants which overexpress SlMBP21 and found the transformants displayed curly leaves, abnormally shaped flowers with twisted and opened stamens, reduced yield parameters, and small and light seeds.  Our studies on the gain-of-function phenotype and gene expression level showed that its novel aspects played important roles in determining leaf morphology, flower and inflorescence architecture, and seed size, as well as the fruit yield.  Overexpression of SlMBP21 in tomato resulted in curly leaves with fewer leaflets due to the regulation of the critical leaf polarity genes that cause an imbalance between the midvein adaxial–abaxial cell growth.  Defects in the architecture of flowers and inflorescences resulted in reduced fruit set.  Furthermore, we demonstrated that SlMBP21 plays its role through inhibiting the expression of the genes involved in the determination of seed development in tomato and SlMBP21 protein can interact with other MADS-box protein (SlAGL11, TAGL1 and SlMBP3) to control seed size.  Thus, these results suggest that overexpression of SlMBP21 causes multiple types of damage to plant growth and development, especially fruit yield, in tomato.
Keywords:  overexpression of SlMBP21        curly leaf        fruit yield        seed size  
Received: 11 May 2020   Accepted:
Fund: This work was supported by the Training Program of Chongqing University Bioengineering College, China (0221001105301), and the National Natural Science Foundation of China (31872121 and 31801870).
Corresponding Authors:  Correspondence HU Zong-li, E-mail: huzongli71@163.com; CHEN Guo-ping, E-mail: chenguoping@cqu.edu.cn * These authors contributed equally to this study.   
About author:  WANG Yun-shu, E-mail: wangyunshu@cqu.edu.cn;

Cite this article: 

WANG Yun-shu, GUO Peng-yu, ZHANG Jian-ling, XIE Qiao-li, SHEN Hui, HU Zong-li, CHEN Guo-ping. 2021. Overexpression of the MADS-box gene SlMBP21 alters leaf morphology and affects reproductive development in tomato. Journal of Integrative Agriculture, 20(12): 3170-3185.

Agarwal P, Kapoor S, Tyagi A K. 2011. Transcription factors regulating the progression of monocot and dicot seed development. Bioessays, 33, 189–202.
Alvarez-Buylla E R, Liljegren S J, Pelaz S, Gold S E, Burgeff C, Ditta G S, Vergara-Silva F, Yanofsky M F. 2000. MADS-box gene evolution beyond flowers: Expression in pollen, endosperm, guard cells, roots and trichomes. The Plant Journal, 24, 457–466.
Bassel G W, Lan H, Glaab E, Gibbs D J, Gerjets T, Krasnogor N, Bonner A J, Holdsworth M J, Provart N J. 2011. Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions. Proceedings of the National Academy of Sciences, 108, 9709–9714.
Bassel G W, Mullen R T, Bewley J D. 2006. ABI3 expression ceases following, but not during, germination of tomato and Arabidopsis seeds. Journal of Experimental Botany, 57, 1291–1297.
Becker A, Winter K-U, Meyer B, Saedler H, Theissen G. 2000. MADS-box gene diversity in seed plants 300 million years ago. Molecular Biology and Evolution, 17, 1425–1434.
Bharathan G, Goliber T E, Moore C, Kessler S, Pham T, Sinha N R. 2002. Homologies in leaf form inferred from KNOXI gene expression during development. Science, 296, 1858–1860.
Bowman J L, Smyth D R, Meyerowitz E M. 1991. Genetic interactions among floral homeotic genes of Arabidopsis. Development, 112, 1–20.
Burko Y, Shleizer-Burko S, Yanai O, Shwartz I, Zelnik I D, Jacob-Hirsch J, Kela I, Eshed-Williams L, Ori N. 2013. A role for APETALA1/fruitfull transcription factors in tomato leaf development. The Plant Cell, 25, 2070–2083.
Causier B, Kieffer M, Davies B. 2002. MADS-box genes reach maturity. Science, 296, 275–276.
Chen G, Hackett R, Walker D, Taylor A, Lin Z, Grierson D. 2004. Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiology, 136, 2641–2651.
Coen E S, Meyerowitz E M. 1991. The war of the whorls: Genetic interactions controlling flower development. Nature, 353, 31–37.
De Folter S, Shchennikova A V, Franken J, Busscher M, Baskar R, Grossniklaus U, Angenent G C, Immink R G. 2006. A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis. The Plant Journal, 47, 934–946.
Edlund A F, Swanson R, Preuss D. 2004. Pollen and stigma structure and function: The role of diversity in pollination. The Plant Cell, 16, S84–S97.
Expósito-Rodríguez M, Borges A A, Borges-Pérez A, Pérez J A. 2008. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biology, 8, 131.
Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky M F, Kater M M, Colombo L. 2003. MADS-box protein complexes control carpel and ovule development in Arabidopsis. The Plant Cell, 15, 2603–2611.
Feng B, Lu D, Ma X, Peng Y, Sun Y, Ning G, Ma H. 2012. Regulation of the Arabidopsis anther transcriptome by DYT1 for pollen development. The Plant Journal, 72, 612–624.
Gao Y, Liu J, Zhang Z, Sun X, Zhang N, Fan J, Niu X, Xiao F, Liu Y. 2013. Functional characterization of two alternatively spliced transcripts of tomato ABSCISIC ACID INSENSITIVE3 (ABI3) gene. Plant Molecular Biology, 82, 131–145.
Gimenez E, Castañeda L, Pineda B, Pan I L, Moreno V, Angosto T, Lozano R. 2016. TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS-LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development. Plant Molecular Biology, 91, 513–531.
Goto K, Meyerowitz E M. 1994. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes & Development, 8, 1548–1560.
Hai H. 2003. Recent progresses from studies of leaf development. Chinese Bulletin of Botany, 20, 416–422.
Hake S, Smith H M, Holtan H, Magnani E, Mele G, Ramirez J. 2004. The role of knox genes in plant development. Annual Review of Cell and Developmental Biology, 20, 125–151.
Han Q, Song Y, Zhang J, Liu L. 2014. Studies on the role of the SlNAC3 gene in regulating seed development in tomato (Solanum lycopersicum). The Journal of Horticultural Science and Biotechnology, 89, 423–429.
Hay A, Tsiantis M. 2009. A KNOX family tale. Current Opinion in Plant Biology, 12, 593–598.
Honys D, Twell D. 2004. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biology, 5, R85.
Huang B, Routaboul J M, Liu M, Deng W, Maza E, Mila I, Hu G, Zouine M, Frasse P, Vrebalov J T. 2017. Overexpression of the class D MADS-box gene Sl-AGL11 impacts fleshy tissue differentiation and structure in tomato fruits. Journal of Experimental Botany, 68, 4869–4884.
Huang T, Kerstetter R, AIrish V F. 2014. APUM23, a PUF family protein, functions in leaf development and organ polarity in Arabidopsis. Journal of Experimental Botany, 65, 1181–1191.
Jack T. 2001. Plant development going MADS. Plant Molecular Biology, 46, 515–520.
Jack T. 2004. Molecular and genetic mechanisms of floral control. The Plant Cell, 16, S1–S17.
Jack T, Brockman L L, Meyerowitz E M. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell, 68, 683–697.
Jofuku K D, Den Boer B, Van Montagu M, Okamuro J K. 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. The Plant Cell, 6, 1211–1225.
Jofuku K D, Omidyar P K, Gee Z, Okamuro J K. 2005. Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proceedings of the National Academy of Sciences of Sciences of the United States of America, 102, 3117–3122.
Kim H U, Cotter R, Johnson S, Senda M, Dodds P, Kulikauskas R, Tang W, Ezcurra I, Herzmark P, McCormick S. 2002. New pollen-specific receptor kinases identified in tomato, maize and Arabidopsis: The tomato kinases show overlapping but distinct localization patterns on pollen tubes. Plant Molecular Biology, 50, 1–16.
Kim M, McCormick S, Timmermans M, Sinha N. 2003. The expression domain of PHANTASTICA determines leaflet placement in compound leaves. Nature, 424, 438–443.
Kim W B, Lim C J, Jang H A, Yi S Y, Oh S K, Lee H Y, Kim H A, Park Y I, Kwon S Y. 2014a. SlPMEI, a pollen-specific gene in tomato. Canadian Journal of Plant Science, 94, 73–83.
Kim W B, Yi S Y, Oh S K, Lim C J, Kim H A, Jang H A, Lee H Y, Park Y I, Kwon S Y. 2014b. Identification of a pollen-specific gene, SlCRK1 (RFK2) in tomato. Genes & Genomics, 36, 303–311.
Koltai H, Bird D M. 2000. Epistatic repression of PHANTASTICA and class 1 KNOTTED genes is uncoupled in tomato. The Plant Journal, 22, 455–459.
Li N, Huang B, Tang N, Jian W, Zou J, Chen J, Cao H, Habib S, Dong X, Wei W. 2017. The MADS-box gene SlMBP21 regulates sepal size mediated by ethylene and auxin in tomato. Plant and Cell Physiology, 58, 2241–2256.
Liu D, Wang D, Qin Z, Zhang D, Yin L, Wu L, Colasanti J, Li A, Mao L. 2014. The SEPALLATA MADS-box protein SLMBP 21 forms protein complexes with JOINTLESS and MACROCALYX as a transcription activator for development of the tomato flower abscission zone. The Plant Journal, 77, 284–296.
Liu Z, Jia L, Mao Y, He Y. 2010. Classification and quantification of leaf curvature. Journal of Experimental Botany, 61, 2757–2767.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 25, 402–408.
Mandel M A, Gustafson-Brown C, Savidge B, Yanofsky M F. 1992. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature, 360, 273–277.
De Martino G, Pan I, Emmanuel E, Levy A, Irish V F. 2006. Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. The Plant Cell, 18, 1833–1845.
Melzer R, Theissen G. 2009. Reconstitution of “floral quartets” in vitro involving class B and class E floral homeotic proteins. Nucleic Acids Research, 37, 2723–2736.
Milberg P, Lamont B B. 1997. Seed/cotyledon size and nutrient content play a major role in early performance of species on nutrient-poor soils. The New Phytologist, 137, 665–672.
Muñoz-Sanz J V, Mcclure B. 2018. Stamen and pollen development. eLS, 6, 1–6.
Muschietti J, Dircks L, Vancanneyt G, McCormick S. 1994. LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52 RNA hydrates and germinates abnormally and cannot achieve fertilization. The Plant Journal, 6, 321–338.
Muschietti J, Eyal Y, McCormick S. 1998. Pollen tube localization implies a role in pollen–pistil interactions for the tomato receptor-like protein kinases LePRK1 and LePRK2. The Plant Cell, 10, 319–330.
Ocarez N, Mejía N. 2016. Suppression of the D-class MADS-box AGL11 gene triggers seedlessness in fleshy fruits. Plant Cell Reports, 35, 239–254.
Ori N, Cohen A R, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I. 2007. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nature Genetics, 39, 787–791.
Parenicová L, De Folter S, Kieffer M, Horner D S, Favalli C, Busscher J, Cook H E, Ingram R M, Kater M M, Davies B. 2003. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: New openings to the MADS world. The Plant Cell, 15, 1538–1551.
Patterson S E. 2001. Cutting loose. Abscission and dehiscence in Arabidopsis. Plant Physiology, 126, 494–500.
Pelaz S, Ditta G S, Baumann E, Wisman E, Yanofsky M F. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405, 200–203.
Peralta I E, Knapp S, Spooner D M. 2005. New species of wild tomatoes (Solanum section Lycopersicon: Solanaceae) from Northern Peru. Systematic Botany, 30, 424–434.
Riechmann J L, Krizek B A, Meyerowitz E M. 1996. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proceedings of the National Academy of Sciences of the United States of America, 93, 4793–4798.
Roberts J A, Elliott K A, Gonzalez-Carranza Z H. 2002. Abscission, dehiscence, and other cell separation processes. Annual Review of Plant Biology, 53, 131–158.
Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H. 1990. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science, 250, 931–936.
Scott R J, Spielman M, Dickinson H G. 2004. Stamen structure and function. The Plant Cell, 16, S46–S60.
Shani E, Burko Y, Ben-Yaakov L, Berger Y, Amsellem Z, Goldshmidt A, Sharon E, Ori N. 2009. Stage-specific regulation of Solanum lycopersicum leaf maturation by class 1 KNOTTED1-LIKE HOMEOBOX proteins. The Plant Cell, 21, 3078–3092.
Shchennikova A V, Shulga O A, Immink R, Skryabin K G, Angenent G C. 2004. Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiology, 134, 1632–1641.
Shleizer-Burko S, Burko Y, Ben-Herzel O, Ori N. 2011. Dynamic growth program regulated by LANCEOLATE enables flexible leaf patterning. Development, 138, 695–704.
Soyk S, Lemmon Z H, Oved M, Fisher J, Liberatore K L, Park S J, Goren A, Jiang K, Ramos A, Esther V D K. 2017. Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell, 169, 1142–1155.
Sun X C, Gao Y F, Zhang N, Li H R, Yang S Z, liu Y S. 2015. SISOM inhibits seed germination by regulating the expression of ABA/GA metabolic genes and SIABI5 in Solanum lycopersicum. Journal of Integrative Agriculture, 14, 326–336.
Tang W, Ezcurra I, Muschietti J, McCormick S. 2002. A cysteine-rich extracellular protein, LAT52, interacts with the extracellular domain of the pollen receptor kinase LePRK2. The Plant Cell, 14, 2277–2287.
Thei G, Saedler H. 2001. Plant biology: Floral quartets. Nature, 409, 469–472.
Theissen G, Becker A, Di Rosa A, Kanno A, Kim J T, Münster T, Winter K U, Saedler H. 2000. A short history of MADS-box genes in plants. Plant Molecular Biology, 42, 115–149.
Tsuchimoto S, Mayama T, Van Der Krol A, Ohtsubo E. 2000. The whorl-specific action of a petunia class B floral homeotic gene. Genes to Cells, 5, 89–99.
Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J. 2002. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science, 296, 343–346.
Waites R, Selvadurai H R, Oliver I R, Hudson A. 1998. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell, 93, 779–789.
Wang F, Li W l, Qin G W, Yuan Z X. 2008. Screening of the optimal liquid culture medium for tomato pollen germination. Northern Horticulture, 11, 143–145.
Wang Y, Hu Z, Zhang J, Yu X, Guo J E, Liang H, Liao C, Chen G. 2018. Silencing SlMED18, tomato mediator subunit 18 gene, restricts internode elongation and leaf expansion. Scientific Reports, 8, 1–13.
Wang Y, Zhang J, Hu Z, Guo X, Tian S, Chen G. 2019. Genome-wide analysis of the MADS-Box transcription factor family in Solanum lycopersicum. International Journal of Molecular Sciences, 20, 2961.
Weigel D, Meyerowitz E M. 1994. The ABCs of floral homeotic genes. Cell, 78, 203–209.
Westoby M, Leishman M, Lord J. 1996. Comparative ecology of seed size and dispersal. Philosophical Transactions of the Royal Society of London (Series B: Biological Sciences), 351, 1309–1318.
Wilson Z A. 2009. Stamen specification and anther development in rice. Chinese Science Bulletin, 54, 2342–2353.
Wilson Z A, Zhang D B. 2009. From Arabidopsis to rice: Pathways in pollen development. Journal of Experimental Botany, 60, 1479–1492.
Yanofsky M F, Ma H, Bowman J L, Drews G N, Feldmann K A, Meyerowitz E M. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 346, 35–39.
Yu L H, Wu J, Zhang Z S, Miao Z Q, Zhao P X, Wang Z, Xiang C B. 2017. Arabidopsis MADS-box transcription factor AGL21 acts as environmental surveillance of seed germination by regulating ABI5 expression. Molecular Plant, 10, 834–845.
Zhang J, Wang Y, Naeem M, Zhu M, Li J, Yu X, Hu Z, Chen G. 2019. An AGAMOUS MADS-box protein, SlMBP3, regulates the speed of placenta liquefaction and controls seed formation in tomato. Journal of Experimental Botany, 70, 909–924.
[1] WANG Li-xia, WANG Jie, LUO Gao-ling, YUAN Xing-xing, GONG Dan, HU Liang-liang, WANG Su-hua, CHEN Hong-lin, CHEN Xin, CHENG Xu-zhen. Construction of a high-density adzuki bean genetic map and evaluation of its utility based on a QTL analysis of seed size[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1753-1761.
[2] LU Yong-li, KANG Ting-ting, GAO Jing-bo, CHEN Zhu-jun, ZHOU Jian-bin. Reducing nitrogen fertilization of intensive kiwifruit orchards decreases nitrate accumulation in soil without compromising crop production[J]. >Journal of Integrative Agriculture, 2018, 17(06): 1421-1431.
No Suggested Reading articles found!