Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (5): 1093-1102    DOI: 10.1016/S2095-3119(18)62133-1
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Evaluating the efficacy of an attenuated Streptococcus equi ssp. zooepidemicus vaccine produced by multi-gene deletion in pathogenicity island SeseCisland_4
MA Fang1, WANG Guang-yu2, ZHOU Hong1, MA Zhe1, LIN Hui-xing1, FAN Hong-jie1, 3 
1 MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R.China
2 National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, P.R.China
3 Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Streptococcus equi ssp. zooepidemicus (SEZ) is a pathogen associated with a wild range of animal species.  Frequent outbreaks have occurred in recent years in pigs, horses, goats and dogs which is liable to infect humans.  There is a lack of efficient vaccines against this disease and the occurrence of antibiotic resistance may render drug therapies ineffective.  In this study, gene deletion mutant (ΔSEZ) in pathogenicity islands SeseCisland_4 was constructed.  The mutant ΔSEZ had a 52-fold decrease in 50% lethal dose (LD50) and had less capacity to adhere epithelial cells.  Importantly, immunization of mice with attenuated vaccine ΔSEZ at the dose of 102 colony-forming units (CFU) mL–1 elicited a significant humoral antibody response, with an antibody titer of 1:12 800.  Therefore, 102 CFU mL–1 might be used as the appropriate immune dose for the attenuated vaccine ΔSEZ, which provided mice with efficient protection against virulent SEZ.  In addition, the hyperimmune sera against 102 CFU mL–1 attenuated vaccine ΔSEZ could confer significant protection against virulent SEZ infection in the passive immunization experiment and exhibited efficient bactericidal activity in the whole blood assay.  Meanwhile, no viable bacteria was detected in blood when mice were immunized with ΔSEZ at the dose of 102 CFU mL–1 via hypodermic injection.  Thereafter, the mutant ΔSEZ at the dose of 102 CFU mL–1 could confer significant protection in mice and had less negative effects on host, which could be an effective attenuated vaccine candidate for the prevention of SEZ.
Keywords:  Streptococcus equi ssp. zooepidemicus        zoonosis        attenuated vaccine        immune dose  
Received: 04 June 2018   Accepted:
Fund: This study was supported by the National Key R&D Program of China (2017YFD0500203), the National Natural Science Foundation of China (31672574), the Special Fund for Agro-scientific Research in the Public Interest, China (201403054), the Primary Research & Development Plan of Jiangsu Province, China (BE2017341), the Jiangsu Agricultural Science and Technology Innovation Fund [CX (16) 1028], and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD).
Corresponding Authors:  Correspondence FAN Hong-jie, Tel/Fax: +86-25-84396219, E-mail: fhj@njau. edu.cn   
About author:  MA Fang, E-mail: 2015207014@njau.edu.cn;

Cite this article: 

MA Fang, WANG Guang-yu, ZHOU Hong, MA Zhe, LIN Hui-xing, FAN Hong-jie. 2019. Evaluating the efficacy of an attenuated Streptococcus equi ssp. zooepidemicus vaccine produced by multi-gene deletion in pathogenicity island SeseCisland_4. Journal of Integrative Agriculture, 18(5): 1093-1102.

Alibayov B, Baba-Moussa L, Sina H, Zdenkova K, Demnerova K. 2014. Staphylococcus aureus mobile genetic elementsisolates of different lineages. Molecular Biology Reports, 41, 5005–5018.
Cao J, Chen D, Xu W, Chen T, Xu S, Luo J, Zhao Q, Liu B, Wang D, Zhang X, Shan Y, Yin Y. 2007. Enhanced protection against pneumococcal infection elicited by immunization with the combination of PspA, PspC, and ClpP. Vaccine, 25, 4996–5005.
De la Cruz M L, Conrado I, Nault A, Perez A, Dominguez L, Alvarez J. 2017. Vaccination as a control strategy against Salmonella infection in pigs: A systematic review and meta-analysis of the literature. Research in Veterinary Science, 114, 86–94.
Fan H, Tang F, Mao Y, Lu C. 2009. Virulence and antigenicity of the szp-gene deleted Streptococcus equi ssp. zooepidemicus mutant in mice. Vaccine, 27, 56–61.
Finney D J. 1985. The median lethal dose and its estimation. Archives of Toxicology, 56, 215–218.
Frey J. 2007. Biological safety concepts of genetically modified live bacterial vaccines. Vaccine, 25, 5598–5605.
Fulde M, Valentin-Weigand P. 2012. Epidemiology and pathogenicity of zoonotic streptococci. In: Chhatwal G, ed., Host-Pathogen Interactions in Streptococcal Diseases. Springer (Science Publishers). Springer, Berlin Heidelberg. pp. 49–81.
Haesebrouck F, Pasmans F, Chiers K, Maes D, Ducatelle R, Decostere A. 2004. Efficacy of vaccines against bacterial diseases in swine: What can we expect? Veterinary Microbiology, 100, 255–268.
Holden K M, Browning G F, Noormohammadi A H, Markham P, Marenda M S. 2014. Avian pathogenic Escherichia coli ΔtonB mutants are safe and protective live-attenuated vaccine candidates. Veterinary Microbiology, 173, 289–298.
Holden M T, Heather Z, Paillot R, Steward K F, Webb K, Ainslie F, Jourdan T, Bason N C, Holroyd N E, Mungall K. 2009. Genomic evidence for the evolution of Streptococcus equi: Host restriction, increased virulence, and genetic exchange with human pathogens. PLoS Pathogen, 5, e1000346.
Huttner A, Dayer J A, Yerly S, Combescure C, Auderset F, Desmeules J, Eickmann M, Finckh A, Goncalves A R, Hooper J W, Kaya G, Krähling V, Kwilas S, Lemaître B, Matthey A, Silvera P, Becker S, Fast P E, Moorthy V, Kieny M P, et al. 2015. The effect of dose on the safety and immunogenicity of the VSV Ebola candidate vaccine: a randomised double-blind, placebo-controlled phase 1/2 trial. The Lancet Infectious Diseases, 15, 1156–1166.
Ivens P A, Matthews D, Webb K, Newton J R, Steward K, Waller A S, Robinson C, Slater J D. 2011. Molecular characterisation of  ‘strangles’ outbreaks in the UK: The use of M-protein typing of Streptococcus equi ssp. equi. Equine Veterinary Journal, 43, 359–364.
Ju C X, Gu H W, Lu C P. 2012. Characterization and functional analysis of atl, a novel gene encoding autolysin in Streptococcus suis. Journal of Bacteriology, 194, 1464–1473.
Kuusi M, Lahti E, Virolainen A, Hatakka M, Vuento R, Rantala L, Vuopio-Varkila J, Seuna E, Karppelin M, Hakkinen M, Takkinen J, Gindonis V, Siponen K, Huotari K. 2006. An outbreak of Streptococcus equi subspecies zooepidemicus associated with consumption of fresh goat cheese. BMC Infectious Diseases, 6, 36.
Liang H, Tang B, Zhao P, Deng M, Yan L, Zhai P, Wei Z. 2018. Identification and characterization of a novel protective antigen, Sec_205 of Streptococcus equi ssp. zooepidemicus. Vaccine, 36, 788–793.
Lindahl S B, Aspan A, Baverud V, Paillot R, Pringle J, Rash N L, Soderlund R, Waller A S. 2013. Outbreak of upper respiratory disease in horses caused by Streptococcus equi subsp. zooepidemicus ST-24. Veterinary Microbiology, 166, 281–285.
Lindsay R W, Ouellette I, Arendt H E, Martinez J, DeStefano J, Lopez M, Pavlakis G N, Chiuchiolo M J, Parks C L, King C R. 2013. SIV antigen-specific effects on immune responses induced by vaccination with DNA electroporation and plasmid IL-12. Vaccine, 31, 4749–4758.
Ma F, Guo X, Fan H J. 2017. Extracellular nucleases of Streptococcus equi subsp. zooepidemicus degrade host neutrophil extracellular traps and impair macrophage activity. Applied and Environmental Microbiology, 83, doi: doi: 10.1128/AEM.02468-16
Ma Z, Geng J, Yi L, Xu B, Jia R, Li Y, Meng Q, Fan H, Hu S. 2013. Insight into the specific virulence related genes and toxin-antitoxin virulent pathogenicity islands in swine streptococcosis pathogen Streptococcus equi ssp. zooepidemicus strain ATCC35246. BMC Genomics, 14, doi: 10.1186/1471-2164-14-377
Ma Z, Geng H, Zhang H, Yu H, Yi L, Lei M, Lu C P, Fan H J, Hu S. 2011. Complete genome sequence of Streptococcus equi subsp. zooepidemicus strain ATCC 35246. Journal of Bacteriology, 193, 5583–5584.
Minces R L, Brown P J, Veldkamp P J. 2011. Human meningitis from Streptococcus equi subsp. zooepidemicus acquired as zoonoses. Epidemiology and Infection, 139, 406–410.
Mir-Sanchis I, Martinez-Rubio R, Marti M, Chen J, Lasa I, Novick R P, Tormo-Mas M A, Penades J R. 2012. Control of Staphylococcus aureus pathogenicity island excision. Molecular Microbiology, 85, 833–845.
Miyoshi-Akiyama T, Takamatsu D, Koyanagi M, Zhao J, Imanishi K I, Uchiyama T. 2005. Cytocidal effect of Streptococcus pyogenes on mouse neutrophils in vivo and the critical role of streptolysin S. Journal of Infectious Diseases, 192, 107–116.
Moloney E, Kavanagh K S, Buckley T C, Cooney J C. 2013. Lineages of Streptococcus equi ssp. equi in the Irish equine industry. Irish Veterinary Journal, 66, doi: 10.1186/2046-0481-66-10
Moyle P M. 2017. Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines. Biotechnology Advances, 35, 375–389.
Paillot R, Darby A C, Robinson C, Wright N L, Steward K F, Anderson E, Webb K, Holden M T, Efstratiou A, Broughton K, Jolley K A, Priestnall S L, Marotti Campi M C, Hughes M A, Radford A, Erles K, Waller A S. 2010. Identification of three novel superantigen-encoding genes in Streptococcus equi subsp. zooepidemicus, szeF, szeN, and szeP. Infection and Immunity, 78, 4817–4827.
Pracht D, Elm C, Gerber J, Bergmann S, Rohde M, Seiler M, Kim K S, Jenkinson H F, Nau R, Hammerschmidt S. 2005. PavA of Streptococcus pneumoniae modulates adherence, invasion, and meningeal inflammation. Infection and Immunity, 73, 2680–2689.
Priebe G P, Brinig M M, Hatano K, Grout M, Coleman F T, Pier G B, Goldberg J B. 2002. Construction and characterization of a live, attenuated aroA deletion mutant of Pseudomonas aeruginosa as a candidate intranasal vaccine. Infection and Immunity, 70, 1507–1517.
Reed L J, Muench H. 1938. A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology, 27, 493–497.
Rubio-Cosials A, Schulz E C, Lambertsen L, Smyshlyaev G, Rojas-Cordova C, Forslund K, Karaca E, Bebel A, Bork P, Barabas O. 2018. Transposase-DNA complex structures reveal mechanisms for conjugative transposition of antibiotic resistance. Cell, 173, 208–220.
Thammavongsa V, Kern J W, Missiakas D M, Schneewind O. 2009. Staphylococcus aureus synthesizes adenosine to escape host immune responses. Journal of Experimental Medicine, 206, 2417–2427.
Walker J A, Timoney J F. 1998. Molecular basis of variation in protective SzP proteins of Streptococcus zooepidemicus. American Journal of Veterinary Research, 59, 1129–1133.
Waller A S. 2010. Protecting against Streptococcus zooepidemicus opportunism: The challenge of vaccine design. Veterinary Journal (London, England: 1997), 184, doi: 10.1016/j.tvjl.2009.06.025
Waller A S. 2013. Strangles: Taking steps towards eradication. Veterinary Microbiology, 167, 50–60.
Waller A S, Jolley K A. 2007. Getting a grip on strangles: Recent progress towards improved diagnostics and vaccines. Veterinary Journal, 173, 492–501.
Walsh C. 2000. Molecular mechanisms that confer antibacterial drug resistance, Nature, 406, 775–781.
Wei Z, Fu Q, Liu X, Xiao P, Lu Z, Chen Y. 2012. Identification of Streptococcus equi ssp. zooepidemicus surface associated proteins by enzymatic shaving. Veterinary Microbiology, 159, 519–525.
Yi L, Wang Y, Ma Z, Zhang H, Zheng J, Yang Y, Lu C, Fan H. 2013. Contribution of fibronectin-binding protein to pathogenesis of Streptococcus equi ssp. zooepidemicus. Pathogens and Disease, 67, 174–183.
Zhong Q, Zhao Y, Chen T, Yin S, Yao X, Wang J, Lu S, Tan Y, Tang J, Zheng B, Hu F, Li M. 2014. A functional peptidoglycan hydrolase characterized from T4SS in 89K pathogenicity island of epidemic Streptococcus suis serotype 2. BMC Microbiology, 14, doi: doi: 10.1186/1471-2180-14-73
[1] MA Lei, ZHU Yuan-mao, YANG Ting, XUE Fei. Evaluation of an attenuated vaccine candidate based on the genotype C of bovine parainfluenza virus type 3 in albino guinea pigs[J]. >Journal of Integrative Agriculture, 2017, 16(09): 2047-2054.
No Suggested Reading articles found!