Please wait a minute...
Journal of Integrative Agriculture  2017, Vol. 16 Issue (12): 2871-2885    DOI: 10.1016/S2095-3119(17)61762-3
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Recent progress and future prospect of digital soil mapping: A review
ZHANG Gan-lin1, 2, LIU Feng1, SONG Xiao-dong1
1 State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R.China
2 University of Chinese Academy of Sciences, Beijing 100049, P.R.China
Download:  PDF (778KB) ( )  
Export:  BibTeX | EndNote (RIS)      
Abstract  To deal with the global and regional issues including food security, climate change, land degradation, biodiversity loss, water resource management, and ecosystem health, detailed accurate spatial soil information is urgently needed.  This drives the worldwide development of digital soil mapping.  In recent years, significant progresses have been made in different aspects of digital soil mapping.  The main purpose of this paper is to provide a review for the major progresses of digital soil mapping in the last decade.  First, we briefly described the rise of digital soil mapping and outlined important milestones and their influence, and main paradigms in digital soil mapping.  Then, we reviewed the progresses in legacy soil data, environmental covariates, soil sampling, predictive models and the applications of digital soil mapping products.  Finally, we summarized the main trends and future prospect as revealed by studies up to now.  We concluded that although the digital soil mapping is now moving towards mature to meet various demands of soil information, challenges including new theories, methodologies and applications of digital soil mapping, especially for highly heterogeneous and human-affected environments, still exist and need to be addressed in the future.
Keywords:  digital soil mapping        soil-landscape model        predictive models        soil functions        spatial variation  
Received: 14 May 2017   Accepted: 08 December 2017

The study is supported by the National Natural Science Foundation of China (91325301, 41571130051).

Corresponding Authors:  Correspondence ZHANG Gan-lin, E-mail:   

Cite this article: 

ZHANG Gan-lin, LIU Feng, SONG Xiao-dong. 2017. Recent progress and future prospect of digital soil mapping: A review. Journal of Integrative Agriculture, 16(12): 2871-2885.

Adhikari K, Hartemink A E, Minasny B, Bou Kheir R, Greve M B, Greve M H. 2014. Digital mapping of soil organic carbon contents and stocks in Denmark. PLOS ONE, 9, e105519.

Adhikari K, Minasny B, Greve M B, Greve M H. 2013. Constructing a soil class map of Denmark based on the FAO legend using digital techniques. Geoderma, 214–215, 101–113.

Arrouays D, Grundy M G, Hartemink A E, Hempel J W, Heuvelink G B M, Hong S Y, Lagacherie P, Lelyk G, McBratney A B, McKenzie N J, Mendonca-Santos M L, Minasny B, Montanarella L, Odeh I O A, Sanchez P A, Thompson J A, Zhang G L. 2014. Chapter three - GlobalSoilMap: Toward a fine-resolution global grid of soil properties. In: Advances in Agronomy. Elsevier Science & Technology, Netherlands.

Barthold F K, Wiesmeier M, Breuer L, Frede H G, Wu J, Blank F B. 2013. Land use and climate control the spatial distribution of soil types in the grasslands of Inner Mongolia. Journal of Arid Environments, 88, 194–205.

Baxter S J, Crawford D M. 2008. Incorporating legacy soil pH databases into digital soil maps. In: Hartemink A E, McBratney A B, Mendonça-Santos M L, eds., Digital Soil Mapping with Limited Data. Springer, The Netherlands.pp. 311–318.

Boettinger J L, Ramsey R D, Bodily J M, Cole N J, Kienast-Brown S, Nield S J, Saunders A M, Stum A K. 2008. Landsat spectral data for digital soil mapping. In: Hartemink A E, McBratney A B, MendonÇa-Santos M L, eds., Digital Soil Mapping with Limited Data. Springer, The Netherlands. pp. 193–202.

Bou K R, Greve M H, Bøcher P K, Greve M B, Larsen R, Mccloy K. 2010. Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models: The case study of Denmark. Journal of Environmental Management, 91, 1150–1160.

Bouma J. 1989. Using soil survey data for quantitative land evaluation. Advances in Soil Science, 9, 177–213.

Breiman L. 2001. Random forests. Machine Learning, 45, 5–32.

Breiman L, Friedman, J H, Olshen R A, Stone C J. 1984. Classification and Regression Trees. Chapman and Hall, New York.

Brungard C W, Boettinger J L. 2010. Application of conditioned Latin hypercube sampling for DSM of arid rangelands in Utah, USA. In: Digital Soil Mapping, Progress in Soil Science 2. Springer, Dordrecht. pp. 67–75.

Brungard C W, Boettinger J L, Duniway M C, Wills S A, Edwards Jr T C. 2015. Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma, 239–240, 68–83.

Brus D J, Heuvelink G B M. 2007. Optimization of sample patterns for universal kriging of environmental variables. Geoderma, 138, 86–95.

Brus D J, Kempen B, Heuvelink G B M. 2011. Sampling for validation of digital soil maps. European Journal of Soil Science, 62, 394–407.

Brus D J, Orton T G, Walvoort D J J, Reijneveld J A, Oenema O. 2014. Disaggregation of soil testing data on organic matter by the summary statistics approach to area-to-point kriging. Geoderma, 226–227, 151–159.

Brus D J, Yang R M, Zhang G L. 2016. Three-dimensional geostatistical modeling of soil organic carbon: A case study in the Qilian Mountains, China. Catena, 141, 46–55.

Burrough P A. 1993. Soil variability: A late 20th century view. Soils and Fertilizers, 56, 529–562.

Carré F, McBratney A B, Mayr T, Montanarella L. 2007. Digital soil assessment: Beyond DSM. Geoderma, 142, 69–79.

Chaplot V, Lorentz S, Podwojewski P, Jewitt G. 2010. Digital mapping of A-horizon thickness using the correlation between various soil properties and soil apparent electrical resistivity. Geoderma, 157, 154–164.

Clifford D, Payne J E, Pringle M J, Searle R, Butler N. 2014. Pragmatic soil survey design using flexible Latin hypercube sampling. Computers & Geosciences, 67, 62–68.

Dokuchaev V V. 1967. Russian Chernozem. In: Monson S,   ed., Israel Program for Scientific Translations Ltd., (for USDA-NSF), Jerusalem.

Elith J, Leathwick J R, Hastie T. 2008. A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802–813.

FAO (Food and Agriculture Organization of the United Nations). 2011. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)- Managing Systems at Risk. FAO, Earthscan, Rome, London.

FAO (Food and Agriculture Organization of the United Nations), International Institute for Applied Systems Analysis (IIASA), ISRIC-World Soil Information (ISRIC), Institute of Soil Science-Chinese Academy of Science (ISS-CAS), Joint Research Centre of the European Commission (JRC). 2008. Harmonized World Soil Database (ver. 1.0). FAO, Rome, Italy and IIASA, Laxenburg, Austria.

FAO (Food and Agriculture Organization of the United Nations), Intergovernmental Technical Panel on Soils (TPS). 2015. Status of the World’s Soil Resources- Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy.

Fotheringham A S, Brunsdon C, Charlton M. 2002. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Wiley, Chichester.

Gasch C K, Hengl T, Gräler B, Meyer H, Magney T S, Brown D J. 2015. Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D+T: The Cook Agronomy Farm data set. Spatial Statistics, 14, 70–90.

Geng X Y, Fraser W, VandenBygaart B, Smith S, Waddell A, Jiao Y, Patterson G. 2010. Toward digital soil mapping in Canada: Existing soil survey data and related expert knowledge. In: Boettinger J L, Howell D W, Moore A C, Hartemink A E, Kienast-Brown S, eds., Digital Soil Mapping: Bridging Research, Environmental Application, and Operation. Springer, Dordrecht. pp. 325–335.

Gessler P E, Moore I D, McKenzie N J, Ryan P J. 1995. Soil-landscape modelling and spatial prediction of soil attributes. International Journal of Geographical Information Science, 9, 421–432.

De Gruijter J J, Brus D J, Bierkens M F P, Knotters M. 2006. Sampling for Natural Resource Monitoring. Springer, New York.

Goovaerts P. 2011. A coherent geostatistical approach for combining choropleth map and field data in the spatial interpolation of soil properties. European Journal of Soil Science, 62, 371–380.

Grunwald S J A, Thompson J L, Boettinger J L. 2011. Digital soil mapping and modeling at continental scales: Finding solution for global issues. Soil Science Society of America Journal, 75, 1201–1213.

Grunwald S. 2006. What do we really know about the space-time continuum of soil-landscapes. In: Grunwald S, ed., Environmental Soil-Landscape Modeling- Geographic Information Technologies and Pedometrics. CRC Press, New York. pp. 3–36.

Grunwald S. 2009. Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma, 152, 195–207.

GSC (GlobalSoilMap Science Committee). 2015. GlobalSoilMap specifications-Tiered1 GlobalSoilMap products. Release 2.4. [2015-07-12].

Guo P T, Li M F, Luo W, Tang Q F, Liu Z W, Lin Z M. 2015. Digital mapping of soil organic matter for rubber plantation at regional scale: An application of random forest plus residuals kriging approach. Geoderma, 237–238, 49–59.

Hartemink A E, McBratney A. 2008. A soil science renaissance. Geoderma, 148, 123–129.

Hartemink A E, McBratney A B, Mendonça-Santos M L. 2008. Digital Soil Mapping with Limited Data. Springer, The Netherlands.

Hengl T, de Jesus J M, MacMillan R A, Batjes N H, Heuvelink G B M, Ribeiro E, Samuel-Rosa A, Kempen B, Leenaars J G B, Walsh M G, Ruiperez Gonzalez M. 2014. SoilGrids1km - Global soil information based on automated mapping. PLOS ONE, 9, e105992.

Hengl T, Mendes de Jesus J, Heuvelink G B M, Ruiperez Gonzalez M, Kilibarda M, Blagoti? A, Shangguan W, Wright M N, Geng X, Bauer-Marschallinger B, Guevara M A, Vargas R, MacMillan R A, Batjes N H, Leenaars J G, Ribeiro E, Wheeler I, Mantel S, Kempen B. 2017. SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE, 12, e0169748.

Hengl T, Rossiter D G, Stein A. 2003. Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Australian Journal of Soil Research, 41, 1403–1422.

Heung B, Bulmer C E, Schmidt M G. 2014. Predictive soil parent material mapping at a regional-scale: A Random Forest approach. Geoderma, 214–215, 141–154.

Heuvelink G B M, Webster R. 2001. Modelling soil variation: Past, present, and future. Geoderma, 100, 269–301.

Hinton G E, Osindero S, Teh Y W. 2006. A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527–1554.

Hong S Y, Minasny B, Zhang Y S, Kim Y H, Jung K H. 2010. Digital soil mapping using legacy soil data in Korea. In: 19th World Congress of Soil Science, Soil Solutions for a Changing World 1–6 August 2010. Brisbane, Australia.

Hua J, Xiong Z, Lowely J, Suh E, Dougherty E R. 2005. Optimal number of features as a function of sample size for various classification rules. Bioinformatics, 21, 1509–1515.

Jenny H. 1941. Factors of Soil Formation. McGraw-Hill, New York, NY.

Ji L, Peters A J. 2003. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sensing of Environment, 87, 85–98.

Kerry R, Goovaerts P, Rawlins B G, Marchant B P. 2012. Disaggregation of legacy soil data using area to point kriging for mapping soil organic carbon at the regional scale. Geoderma, 170, 347–358.

Kidd D, Malone B, McBratney A, Minasny B, Webb M. 2015. Operational sampling challenges to digital soil mapping in Tasmania, Australia. Geoderma Regional, 4, 1–10.

Kumar S, Lal R, Liu D. 2012. A geographically weighted regression kriging approach for mapping soil organic carbon stock. Geoderma, 189–190, 627–634.

Kunkel M L, Flores A N, Smith T J, McNamara J P, Benner S G. 2011. A simplified approach for estimating soil carbon and nitrogen stocks in semi-arid complex terrain. Geoderma, 165, 1–11.

Lacoste M, Lemercier B, Walter C. 2011. Regional mapping of soil parent material by machine learning based on point data. Geomorphology, 133, 90–99.

Lagacherie P. 2008. Digital soil mapping: A state of the art. In: Hartemink A E, McBratney A B, MendonÇa-Santos M L, eds., Digital Soil Mapping with Limited Data. Springer, Dordrecht. pp. 3–14.

Lagacherie P, McBratney A B. 2007. Chapter 1. Spatial soil information systems and spatial soil inference systems: Perspectives for digital soil mapping. In: Lagacherie P, McBratney A B, Voltz M, eds., Digital Soil Mapping, an Introductory Perspective. Developments in Soil Science. vol. 31. Elsevier, Amsterdam. pp. 3–24.

Lagacherie P, McBratney A B, Voltz M. 2007. Digital Soil Mapping, an Introductory Perspective. Developments in Soil Science. vol. 31. Elsevier, Amsterdam.

Lamorski K, Pachepsky Y, Slawiński C, Walczak R T. 2008. Using support vector machines to develop pedotransfer functions for water retention of soils in Poland. Soil Science Society of America Journal, 72, 1243–1247.

Lark R M, Ander E L, Cave M R, Knights K V, Glennon M M, Scanlon R P. 2014. Mapping trace element deficiency by cokriging from regional geochemical soil data: A case study on cobalt for grazing sheep in Ireland. Geoderma, 226–227, 64–78.

Li H Y, Marchant B P, Webster R. 2016. Modeling the electrical conductivity of soil in the Yangtze delta in three dimensions. Geoderma, 269, 119–125.

Li H Y, Webster R, Shi Z. 2015. Mapping soil salinity in the Yangtze delta: REML and universal kriging (E-BLUP) revisited. Geoderma, 237–238, 71–77.

Li Y. 2010. Can the spatial prediction of soil organic matter contents at various sampling scales be improved by using regression kriging with auxiliary information? Geoderma, 159, 63–75.

Li Z, Huffman T, Zhang A, Zhou F, Mcconkey B. 2012. Spatially locating soil classes within complex soil polygons- Mapping soil capability for agriculture in Saskatchewan Canada. Agriculture Ecosystems & Environment, 152, 59–67.

Ließ M, Glaser B, Huwe B. 2012. Making use of the World Reference base diagnostic horizons for the systematic description of the soil continuum- Application to the tropical mountain soil-landscape of southern Ecuador. Catena, 97, 20–30.

Liu F, Geng X, Zhu A X, Fraser W. 2012. Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS. Geoderma, 171–172, 44–52.

Liu F, Geng X, Zhu A X, Fraser W, Song X D, Zhang G L. 2016a. Soil polygon disaggregation through similarity-based prediction with legacy pedons. Journal of Arid Land, 8, 760–772.

Liu F, Rossiter D G, Song X D, Zhang G L, Yang R M, Zhao Y G, Li D C, Ju B. 2016. A similarity-based method for three-dimensional prediction of soil organic matter concentration. Geoderma, 263, 254–263.

Liu F, Zhang G L, Sun Y J, Zhao Y G, Li D C. 2013. Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape. Soil Science Society of America Journal, 77, 1241–1253.

Liu F, Zhu A X, Li B L, Pei T, Qin C Z, Liu G H, Wang Y J, Zhou C H. 2009. Identification of spatial difference of soil types using land surface feedback dynamic patterns. Chinese Journal of Soil Science, 40, 501–508. (in Chinese)

Liu T, Juang K W, Lee D Y. 2006. Interpolating soil properties using kriging combinied with categorical information of soil maps. Soil Science Society of America Journal, 70, 1200–1209.

Lorenzetti R, Barbetti R, Fantappiè M, L’Abate G, Costantini E A C. 2015. Comparing data mining and deterministic pedology to assess the frequency of WRB reference soil groups in the legend of small scale maps. Geoderma, 237–238, 237–245.

Malone B P, McBratney A B, Minasny B, Laslett G M. 2009. Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154, 138–152.

Martin M P, Orton T G, Lacarce E, Meersmans J, Saby NP A, Paroissien J B, Jolivet C, Boulonne L, Arrouays D. 2014. Evaluation of modelling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale. Geoderma, 223–225, 97–107.

McBratney A B, Field D J, Koch A. 2014. The dimensions of soil security. Geoderma, 213, 203–213.

McBratney A B, Mendonça Santos M L, Minasny B. 2003. On digital soil mapping. Geoderma, 117, 3–52.

McBratney A B, Odeh I O A, Bishop T F A, Dunbar M S, Shatar T M. 2000. An overview of pedometric techniques for use in soil survey. Geoderma, 97, 293–327.

McKenzie N J, Austin M P. 1993. A quantitative Australian approach to medium and small scale surveys based on soil stratigraphy and environmental correlations. Geoderma, 57, 329–355.

Mei C L, He S Y, Fang K T. 2004. A note on the mixed geographically weighted regression model. Journal of Regional Science, 44, 143–157.

Minasny B, McBratney A. 2016. Digital soil mapping: A brief history and some lessons. Geoderma, 264, 301–311.

Minasny B, McBratney A B, Lark R M. 2008. Digital soil mapping technologies for countries with sparse data infrastructures. In: Hartemink A E, McBratney A B, MendonÇa-Santos M L, eds., Digital Soil Mapping with Limited Data. Springer, Dordrecht. pp. 15–30.

Mishra U, Lal R, Liu D, Van Meirvenne M. 2010. Predicting the spatial variation of the soil organic carbon pool at a regional scale. Soil Science Society of America Journal, 74, 906–914.

Moncada M P, Gabriels D, Cornelis W M. 2014. Data-driven analysis of soil quality indicators using limited data. Geoderma, 235–236, 271–278.

Moore I D, Gessler P E, Nielsen G A, Peterson G A. 1993. Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57, 443–520.

Mulder V L, Lacoste M, Richer-de-Forges A C, Martin M P, Arrouays D. 2016. National versus global modelling the 3D distribution of soil organic carbon in mainland France. Geoderma, 263, 16–34.

Odgers N P, McBratney A B, Minasny B. 2015. Digital soil property mapping and uncertainty estimation using soil class probability rasters. Geoderma, 237–238, 190–198.

Odgers N P, Sun W, McBratney A B, Minasny B, Clifford D. 2014. Disaggregating and harmonising soil map units through resampled classification trees. Geoderma, 214−215, 91–100.

Panagos P, Liedekerke M V, Jones A, Montanarella L. 2012. European soil data centre: Response to European policy support and public data requirements. Land Use Policy, 29, 329–338.

Pásztor L, Laborczi A, Takács K, Szatmári G, Bakacsi Z, Szabó J. 2016. Variations for the implementation of SCORPAN’s “S”. In: Digital Soil Mapping Across Paradigms, Scales and Boundaries. Springer, Singapore. pp. 331–342.

Petropoulos G P, Ireland G, Barrett B. 2015. Surface soil moisture retrievals from remote sensing: current status, products & future trends. Physics and Chemistry of the Earth, 83–84, 36–56.

Piedallu C, Gégout J C, Bruand A, Seynave I. 2011. Mapping soil water holding capacity over large areas to predict potential production of forest stands. Geoderma, 160, 355–366.

Qi F, Zhu A X. 2011. Comparing three methods for modeling the uncertainty in knowledge discovery from area-class soil maps. Computers & Geosciences, 37, 1425–1436.

Qi F, Zhu A X, Harrower M. 2006. Fuzzy soil mapping based on prototype category theory. Geoderma, 136, 774–787.

Qin C Z, Zhu A X, Qiu W L, Lu Y J, Li B L, Pei T. 2012. Mapping soil organic matter in small low-relief catchments using fuzzy slope position information. Geoderma, 171–172, 64–74.

Qiu X X, Li D C, Zhao Y G, Liu F, Song X D, Zhang G L. 2016. On accessibility of predesigned sampling points of soil survey in complex region. Soils, 47, 984–988.

Salahat M, Mohtar R H, Braudeau E, Schulze D G, Assi A. 2012. Toward delineating hydro-functional soil mapping units using the pedostructure concept: A case study. Computers & Electronics in Agriculture, 86, 15–25.

Sanchez P A, Ahamed S, Carré F, Hartemink A E, Hempel J, Huising J, Lagacherie P, McBratney A B, McKenzie N J, Mendonça-Santos M L, Minasny B, Montanarella L, Okoth P, Palm C A, Sachs J D, Shepherd K D, Vågen T G, Vanlauwe B, Walsh M G, Winowiecki L A. 2009. Digital soil map of the world. Science, 325, 680.

Schmidhuber J. 2015. Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.

Schuler U, Herrmann L, Ingwersen J, Erbe P, Stahr K. 2010. Comparing mapping approaches at subcatchment scale in northern Thailand with emphasis on the Maximum Likelihood approach. Catena, 81, 137–171.

Scull P. 2010. A Top-down approach to the state factor paradigm for use in macroscale soil analysis. Annals of the Association of American Geographers, 100, 1–12.

Scull P, Franklin J, Chadwick O A, McArthur D. 2003. Predictive soil mapping: A review. Progress in Physical Geography, 27, 171–197.

Shahbazi F, Aliasgharzad N, Ebrahimzad S A, Najafi N. 2013. Geostatistical analysis for predicting soil biological maps under different scenarios of land use. European Journal of Soil Biology, 55, 20–27.

Silva S H G, de Menezes M D, Owens P R, Curi N. 2016. Retrieving pedologist’s mental model from existing soil map and comparing data mining tools for refining a larger area map under similar environmental conditions in Southeastern Brazil. Geoderma, 267, 65–77.

Smith S, Bulmer C, Flager E, Frank G, Filatow D. 2010. Digital soil mapping at multiple scales in British Columbia, Canada. In: Program and Abstracts, 4th Global Workshop on Digital Soil Mapping. Rome, Italy.

Sohrabian B, Tercan A E. 2014. Introducing minimum spatial cross-correlation kriging as a new estimation method of heavy metal contents in soils. Geoderma, 226–227, 317–331.

Song X D, Brus D J, Liu F, Li D C, Zhao Y G, Yang J L, Zhang G L. 2016a. Mapping soil organic carbon content by geographically weighted regression: A case study in the Heihe River Basin, China. Geoderma, 261, 11–22.

Song X D, Liu F, Zhang G L, Li D C, Zhao Y G. 2016b. Estimation of soil texture at a regional scale using local soil-landscape models. Soil Science, 181, 435–445

Song X D, Zhang G L, Liu F, Li D C, Zhao Y G. 2016c. Characterization of the spatial variability of soil available zinc at various sampling densities using grouped soil type information. Environmental Monitoring & Assessment, 188, 600.

Song X D, Zhang G L, Liu F, Li D C, Zhao Y G, Yang J L. 2016d. Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model. Journal of Arid Land, 8, 734–748.

Srinivasan R, Zhang X, Arnold J. 2010. SWAT ungauged: Hydrological budget and crop yield predictions in the upper Mississippi River Basin. Transactions of the ASABE, 53, 1533–1546.

Sulaeman Y, Minasny B, McBratney A B, Sarwani M, Sutandi A. 2013. Harmonizing legacy soil data for digital soil mapping in Indonesia. Geoderma, 192, 77–85.

Sun X L, Zhao Y G, Wu Y J, Zhao M S, Wang H L, Zhang G L. 2012. Spatio-temporal change of soil organic matter content in Jiangsu Province, China, based on digital soil maps. Soil Use and Management, 28, 318–328.

Szatmári G, Barta K, Pásztor L. 2016. Multivariate Sampling Design Optimization for Digital Soil Mapping. Digital Soil Mapping Across Paradigms, Scales and Boundaries. Springer, Singapore. pp. 77–87.

Taghizadeh-Mehrjardi R, Nabiollahi K, Kerry R. 2016. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma, 266, 98–110.

Thompson J A, Roecker S, Grunwald S, Owens P R. 2012. Digital soil mapping: Interactions with and applications for hydropedology. Hydropedology, 1, 664–709.

Tóth B, Weynants M, Hengl T. 2017. 3D soil hydraulic database of Europe at 250 m resolution. Hydrological Processes, 31, 2662–2666

Tóth G, Gardi C, Bódis K, Éva Ivits Aksoy E, Jones A, Jeffrey S, Petursdottir T, Montanarella L. 2013. Continental-scale assessment of provisioning soil functions in Europe. Ecological Processes, 2, 32.

Vasques G M, Grunwald S, Comerford N B, Sickman J O. 2010. Regional modelling of soil carbon at multiple depths within a subtropical watershed. Geoderma, 156, 326–336

Vaysse K, Lagacherie P. 2015. Evaluating Digital Soil Mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France). Geoderma, 4, 20–30.

Veres M, Lacey G, Taylor G W. 2015. Deep learning architectures for soil property prediction. In: 12th Conference on Computer and Robot Vision (CRV), June 3–5, 2015. Halifax, Canada.

Wang D C, Zhang G L, Pan X Z, Zhao Y G, Zhao M S, Wang G F. 2012. Mapping soil texture of a plain area using fuzzy-c-means clustering method based on land surface diurnal temperature difference. Pedosphere, 22, 394–403.

Wei C H, Qi F. 2012. On the estimation and testing of mixed geographically weighted regression models. Economic Modelling, 29, 2615–2620.

Were K, Bui D T, Dick Ø B, Singh B R. 2015. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators, 52, 394–403.

Yang L, Jiao Y, Fahmy S, Zhu A X, Hann S, Burt J E, Qi F. 2011. Updating conventional soil maps through digital soil mapping. Soil Science Society of America Journal, 75, 1044–1053.

Yang L, Zhu A X, Qi F, Qin C Z, Li B L, Pei T. 2013. An integrative hierarchical stepwise sampling strategy and its application in digital soil mapping. International Journal of Geographical Information Science, 27, 1–23.

Yang R M, Liu F, Zhang G L, Zhao Y G, Li D C, Yang J L, Yang F, Yang F. 2016a. Mapping soil texture based on field soil moisture observations at a high temporal resolution in an oasis agricultural area. Pedosphere, 26, 699–708.

Yang R M, Rossiter D G, Liu F, Lu Y, Yang F, Yang F, Zhao Y G, Li D C, Zhang G L. 2015. Predictive mapping of topsoil organic carbon in an alpine environment aided by Landsat TM. PLOS ONE, 10, e0139042.

Yang R M, Zhang G L, Liu F, Lu Y Y, Yang F, Yang F, Yang M, Zhao Y G, Li D C. 2016b. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecological Indicators, 60, 870–878.

Ye H, Huang W, Huang S, Huang Y, Zhang S, Dong Y, Chen P. 2017. Effects of different sampling densities on geographically weighted regression kriging for predicting soil organic carbon. Spatial Statistics, 20, 76–91.

Zhang C, Tang Y, Xu X, Kiely G. 2011. Towards spatial geochemical modelling: Use of geographically weighted regression for mapping soil organic carbon contents in Ireland. Applied Geochemistry, 26, 1239–1248

Zhang H, Zhang G L, Gong Z T. 2004. The progress of quantitative soil-landscape modeling- a review. Chinese Journal of Soil Science, 35, 339–346. (in Chinese)

Zhao M S, Rossiter D G, Li D C, Zhao Y G, Liu F, Zhang G L. 2014. Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index. Ecological Indicators, 39, 120–133.

Zhu A X, Band L E. 1994. A knowledge-based approach to data integration for soil mapping. Canadian Journal of Remote Sensing, 20, 408–418.

Zhu A X, Band L E, Dutton B, Nimlos T J. 1996. Automated soil inference under fuzzy logic. Ecological Modelling, 90, 123–145.

Zhu A X, Liu F, Li B L, Pei T, Qin C Z, Liu G H, Wang Y J, Chen Y N, Ma X W, Qi F, Zhou C H. 2010. Differentiation of soil conditions over flat areas using land surface feedback dynamic patterns extracted from MODIS. Soil Science Society of America Journal, 74, 861–869.

Zhu A X, Yang L, Li B L, Qin C Z, English E, Burt J E, Zhou C H. 2008. Purposive sampling for digital soil mapping for areas with limited data. In: Hartemink A E, McBratney A B, MendonÇa-Santos M L, eds., Digital Soil Mapping with Limited Data. Springer, Dordrecht. pp. 233–245.
[1] LIU Feng, YANG Fei, ZHAO Yu-guo, ZHANG Gan-lin, LI De-cheng. Predicting soil depth in a large and complex area using machine learning and environmental correlations[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2422-2434.
[2] XU Xin-peng, HE Ping, CHUAN Li-min, LIU Xiao-yan, LIU Ying-xia, ZHANG Jia-jia, HUANG Xiao-meng, QIU Shao-jun, ZHAO Shi-cheng, ZHOU Wei. Regional distribution of wheat yield and chemical fertilizer requirements in China[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2772-2780.
[3] LIANG Peng, QIN Cheng-zhi, ZHU A-xing, HOU Zhi-wei, FAN Nai-qing, WANG Yi-jie. A case-based method of selecting covariates for digital soil mapping[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2127-2136.
[4] ZHANG Shi-yuan, ZHANG Xiao-hu, QIU Xiao-lei, TANG Liang, ZHU Yan, CAO Wei-xing, LIU Lei-lei. Quantifying the spatial variation in the potential productivity and yield gap of winter wheat in China[J]. >Journal of Integrative Agriculture, 2017, 16(04): 845-857.
[5] CAO Xiang-hui, LONG Huai-yu, LEI Qiu-liang, LIU Jian, ZHANG Ji-zong, ZHANG Wen-ju, WU Shu-xia. Spatio-temporal variations in organic carbon density and carbon sequestration potential in the topsoil of Hebei Province, China[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2627-2638.
[6] SU Wei, YU De-yong, SUN Zhong-ping, ZHAN Jun-ge, LIU Xiao-xuan, LUO Qian. Vegetation changes in the agricultural-pastoral areas of northern China from 2001 to 2013[J]. >Journal of Integrative Agriculture, 2016, 15(05): 1145-1156.
No Suggested Reading articles found!