Please wait a minute...
Journal of Integrative Agriculture  2015, Vol. 14 Issue (3): 453-468    DOI: 10.1016/S2095-3119(14)60935-7
Special Focus: Development and Application of Plant Transformation Techniques Advanced Online Publication | Current Issue | Archive | Adv Search |
Constructing the barley model for genetic transformation in Triticeae
 LÜ Bo, WU Jia-jie, FU Dao-lin
State Key Laboratory of Crop Biology/Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Barley (Hordeum vulgare L.) is one of the oldest domesticated crops, showing dramatic adaptation to various climate and environmental conditions. As a major cereal crop, barley ranks the 4th after wheat, maize and rice in terms of planting area and production all over the world. Due to its diploid nature, the cultivated barley is considered as an ideal model to study the polyploid wheat and other Triticeae species. Here, we reviewed the development, optimization, and application of transgenic approaches in barley. The most efficient and robust genetic transformation has been built on the Agrobacterium-mediated transfer in conjunction with the immature embryo-based regeneration. We then discussed future considerations of using more practical technologies in barley transformation, such as the T-DNA/transposon tagging and the genome editing. As a cereal crop amenable to genetic transformation, barley will serve as the most valuable carrier for global functional genomics in Triticeae and is becoming the most practical model for generating value-added products.

Abstract  Barley (Hordeum vulgare L.) is one of the oldest domesticated crops, showing dramatic adaptation to various climate and environmental conditions. As a major cereal crop, barley ranks the 4th after wheat, maize and rice in terms of planting area and production all over the world. Due to its diploid nature, the cultivated barley is considered as an ideal model to study the polyploid wheat and other Triticeae species. Here, we reviewed the development, optimization, and application of transgenic approaches in barley. The most efficient and robust genetic transformation has been built on the Agrobacterium-mediated transfer in conjunction with the immature embryo-based regeneration. We then discussed future considerations of using more practical technologies in barley transformation, such as the T-DNA/transposon tagging and the genome editing. As a cereal crop amenable to genetic transformation, barley will serve as the most valuable carrier for global functional genomics in Triticeae and is becoming the most practical model for generating value-added products.
Keywords:  Agrobacterium-mediated transfer       genetically modified organism       Hordeum vulgare       immature embryos  
Received: 11 October 2014   Accepted:
Fund: 

This study was supported by the Natural Science Foundation of Shandong Province, China (JQ201107), the National Natural Science Foundation of China (31110103917), and the Cooperative Innovation Center of Efficient Production with High Annual Yield of Wheat and Corn, Shandong Province, China.

Corresponding Authors:  FU Dao-lin, Tel: +86-538-8242213, Fax: 86-538-8242226, E-mail: dlfu@sdau.edu.cn     E-mail:  dlfu@sdau.edu.cn

Cite this article: 

Lü Bo, WU Jia-jie, FU Dao-lin. 2015. Constructing the barley model for genetic transformation in Triticeae. Journal of Integrative Agriculture, 14(3): 453-468.

Akula C, Akula A, Henry R. 1999. Improved regenerationefficiency from mature embryos of barley cultivars. BiologiaPlantarum, 42, 505-513

Alonso J M, Stepanova A N, Leisse T J, Kim C J, Chen H,Shinn P, Stevenson D K, Zimmerman J, Barajas P, CheukR, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, et al.2003. Genome-wide insertional mutagenesis of Arabidopsisthaliana. Science, 301, 653-657

Ayliffe M, Pallotta M, Langridge P, Pryor A. 2007. A barleyactivation tagging system. Plant Molecular Biology, 64,329-347

Babaeizad V, Imani J, Kogel K H, Eichmann R, HückelhovenR. 2009. Over-expression of the cell death regulatorBAX inhibitor-1 in barley confers reduced or enhancedsusceptibility to distinct fungal pathogens. Theoretical andApplied Genetics, 118, 455-463

Badr A, M K, Sch R, Rabey H E, Effgen S, Ibrahim H H, Pozzi C,Rohde W, Salamini F. 2000. On the origin and domesticationhistory of barley (Hordeum vulgare). Molecular Biology andEvolution, 17, 499-510

Bahadur K C R, Thapa B, Bhattarai N. 2013. Gold nanoparticlebasedgene delivery: Promises and challenges.Nanotechnology Reviews, 3, 269-280

Bartlett J G, Alves S C, Smedley M, Snape J W, Harwood WA. 2008. High-throughput Agrobacterium-mediated barleytransformation. Plant Methods, 4, 22.Bayliss M W, Dunn S D M. 1979. Factors affecting callusformation from embryos of barley (Hordeum vulgare). PlantScience Letters, 14, 311-316

Becher T, Haberland G, Koop H U. 1992. Callus formation and plant regeneration in standard and microexplantsfrom seedlings of barley (Hordeum vulgare L.). Plant CellReports, 11, 39-43

Binns A N, Thomashow M F. 1988. Cell biology of Agrobacteriuminfection and transformation of plants. Annual Review ofMicrobiology, 42, 575-606

Blanco A, Fracchiolla G V, Greco B. 1986. Intergenericwheat×barley hybrid. Journal of Heredity, 77, 98-100

Brenchley R, Spannagl M, Pfeifer M, Barker G L A, D’AmoreR, Allen A M, McKenzie N, Kramer M, Kerhornou A, BolserD, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, LuoM C, Sehgal S, Gill B, Kianian S, et al. 2012. Analysis ofthe breadwheat genome using whole-genome shotgunsequencing. Nature, 491, 705-710

Bruchmüller A, Marthe C, Hensel G, Sode B, Goedeke S,Borisjuk N, Brodzik R, Koprowski H, Kumlehn J. 2007.Expression of influenza A (H5N1) vaccine in barley grainsfor oral bird immunization. Journal für Verbraucherschutzund Lebensmittelsicherheit, 2, 118-118

Brüggemann M, Osborn M J, Ma B, Avis S, Anegon I, BuelowR. 2014. Transgenic animals derived by DNA microinjection.In: Dübel S, Reichert J M, eds., Handbook of TherapeuticAntibodies. Wiley-VCH Verlag GmbH & Co. KGaA,Weinheim, Germany. pp. 77-88

Bulgarelli D, Biselli C, Collins N C, Consonni G, Stanca A M,Schulze-Lefert P, Valè G. 2010. The CC-NB-LRR-typeRdg2a resistance gene confers immunity to the seed-bornebarley leaf stripe pathogen in the absence of hypersensitivecell death. PLoS ONE, 5, e12599.

Bundock P, van Attikum H, den Dulk-Ras A, Hooykaas P J J.2002. Insertional mutagenesis in yeasts using T-DNA fromAgrobacterium tumefaciens. Yeast, 19, 529-536

Burton R A, Collins H M, Kibble N A J, Smith J A, Shirley N J,Jobling S A, Henderson M, Singh R R, Pettolino F, WilsonS M, Bird A R, Topping D L, Bacic A, Fincher G B. 2011.Over-expression of specific HvCslF cellulose synthase-likegenes in transgenic barley increases the levels of cell wall(1,3;1,4)-β-d-glucans and alters their fine structure. PlantBiotechnology Journal, 9, 117-135

Caldwell D G, McCallum N, Shaw P, Muehlbauer G J, MarshallD F, Waugh R. 2004. A structured mutant population forforward and reverse genetics in barley (Hordeum vulgareL.). The Plant Journal, 40, 143-150

Carciofi M, Blennow A, Jensen S, Shaik S, Henriksen A, BuleonA, Holm P, Hebelstrup K. 2012. Concerted suppressionof all starch branching enzyme genes in barley producesamylose-only starch granules. BMC Plant Biology, 12, 223.

Cattoir-Reynaerts A, Degryse E, Negrutiu I, Aerts M, Jacobs M.1981. Effects of aspartate-derived amino acids on growthof barley and Arabidopsis plants and callus. Zeitschrift fürPflanzenphysiologie, 101, 67-74

Celis J E. 1984. Microinjection of somatic cells with micropipettes:comparison with other transfer techniques. BiochemicalJournal, 223, 281-291

Chalupska D, Lee H Y, Faris J D, Evrard A, Chalhoub B,Haselkorn R, Gornicki P. 2008. Acc homoeoloci and theevolution of wheat genomes. Proceedings of the NationalAcademy of Sciences of the United States of America,105, 9691-9696

Chang Y, Von Zitzewitz J, Hayes P M, Chen T H H. 2003. Highfrequency plant regeneration from immature embryos of anelite barley cultivar (Hordeum vulgare L. cv. Morex). PlantCell Reports, 21, 733-738

Cheng J K, Alper H S. 2014. The genome editing toolbox:Aspectrum of approaches for targeted modification. CurrentOpinion in Biotechnology, 30, 87-94

Cho M J, Jiang W, Lemaux P G. 1998. Transformation ofrecalcitrant barley cultivars through improvement ofregenerability and decreased albinism. Plant Science,138, 229-244

Cho M J, Jiang W, Lemaux P G. 1999a. High-frequencytransformation of oat via microprojectile bombardment ofseed-derived highly regenerative cultures. Plant Science,148, 9-17

Cho M J, Wong J H, Marx C, Jiang W, Lemaux P G,Buchanan B B. 1999b. Overexpression of thioredoxin hleads to enhanced activity of starch debranching enzyme(pullulanase) in barley grain. Proceedings of the NationalAcademy of Sciences of the United States of America, 96,14641-14646

Cho M J, Ha C D, Lemaux P G. 2000. Production of transgenictall fescue and red fescue plants by particle bombardmentof mature seed-derived highly regenerative tissues. PlantCell Reports, 19, 1084-1089

Christou P. 1992. Genetic transformation of crop plantsusing microprojectile bombardment. The Plant Journal, 2,275-281

de Cleene M, De Ley J. 1976. The host range of crown gall.The Botanical Review, 42, 389-466

Dahleen L S, Bregitzer P. 2002. An improved media systemfor high regeneration rates from barley immature embryoderivedcallus cultures of commercial cultivars. CropScience, 42, 934-938

Delhaize E, Ryan P R, Hebb D M, Yamamoto Y, Sasaki T,Matsumoto H. 2004. Engineering high-level aluminumtolerance in barley with the ALMT1 gene. Proceedings ofthe National Academy of Sciences of the United States ofAmerica, 101, 15249-15254

Delhaize E, Taylor P, Hocking P J, Simpson R J, Ryan PR, Richardson A E. 2009. Transgenic barley (Hordeumvulgare L.) expressing the wheat aluminium resistancegene (TaALMT1) shows enhanced phosphorus nutritionand grain production when grown on an acid soil. PlantBiotechnology Journal, 7, 391-400

Ding L, Li S, Gao J, Wang Y, Yang G, He G. 2009. Optimizationof Agrobacterium-mediated transformation conditions inmature embryos of elite wheat. Molecular Biology Reports,36, 29-36

Eichmann R, Bischof M, Weis C, Shaw J, LacommeC, Schweizer P, Duchkov D, Hensel G, Kumlehn J,Hückelhoven R. 2010. BAX INHIBITOR-1 is required forfull susceptibility of barley to powdery mildew. Molecular Plant-Microbe Interactions, 23, 1217-1227

Erlendsson L S, Muench M O, Hellman U, Hrafnkelsdóttir S M,Jonsson A, Balmer Y, Mäntylä E, Örvar B L. 2010. Barley asa green factory for the production of functional Flt3 ligand.Biotechnology Journal, 5, 163-171

Eskelin K, Ritala A, Suntio T, Blumer S, Holkeri H, WahlströmE H, Baez J, Mäkinen K, Maria N A. 2009. Production ofa recombinant full-length collagen type I α-1 and of a 45-kDa collagen type I α-1 fragment in barley seeds. PlantBiotechnology Journal, 7, 657-672

Fang Y D, Akula C, Altpeter F. 2002. Agrobacterium-mediatedbarley (Hordeum vulgare L.) transformation using greenfluorescent protein as a visual marker and sequenceanalysis of the T-DNA::barley genomic DNA junctions.Journal of Plant Physiology, 159, 1131-1138

Fu D, Huang B, Xiao Y, Muthukrishnan S, Liang G. 2007.Overexpression of barley hva1 gene in creeping bentgrassfor improving drought tolerance. Plant Cell Reports, 26,467-477

Fu D, Tisserat N A, Xiao Y, Settle D, Muthukrishnan S, Liang GH. 2005a. Overexpression of rice TLPD34 enhances dollarspotresistance in transgenic bentgrass. Plant Science,168, 671-680

Fu D, Xiao Y, Muthukrishnan S, Liang G H. 2005b. In vivoperformance of a dual genetic marker, manA-gfp, intransgenic bentgrass. Genome, 48, 722-730

Fujii M, Yokosho K, Yamaji N, Saisho D, Yamane M, TakahashiH, Sato K, Nakazono M, Ma J F. 2012. Acquisition ofaluminium tolerance by modification of a single gene inbarley. Nat Commun, 3, 713.

Funatsuki H, Kuroda H, Kihara M, Lazzeri P A, Müller E, LörzH, Kishinami I. 1995. Fertile transgenic barley generated bydirect DNA transfer to protoplasts. Theoretical and AppliedGenetics, 91, 707-712

Gaut B S. 2002. Evolutionary dynamics of grass genomes. NewPhytologist, 154, 15-28

Goff S A, Ricke D, Lan T H, Presting G, Wang R, Dunn M,Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D,Hutchison D, Martin C, Katagiri F, Lange B M, MoughamerT, Xia Y, Budworth P, Zhong J, Miguel T, et al. 2002. A draftsequence of the rice genome (Oryza sativa L. ssp. japonica).Science, 296, 92-100

Goldstein C S, Kronstad W E. 1986. Tissue culture and plantregeneration from immature embryo explants of Barley,Hordeum vulgare. Theoretical and Applied Genetics, 71,631-636

Gottwald S, Bauer P, Komatsuda T, Lundqvist U, Stein N. 2009.TILLING in the two-rowed barley cultivar ‘Barke’ revealspreferred sites of functional diversity in the gene HvHox1.BMC Research Notes, 2, 258.

Gruber B D, Delhaize E, Richardson A E, Roessner U, JamesR A, Howitt S M, Ryan P R. 2011. Characterisation ofHvALMT1 function in transgenic barley plants. FunctionalPlant Biology, 38, 163-175

Gruber B D, Ryan P R, Richardson A E, Tyerman S D, RameshS, Hebb D M, Howitt S M, Delhaize E. 2010. HvALMT1 frombarley is involved in the transport of organic anions. Journalof Experimental Botany, 61, 1455-1467

Gubišová M, Mihálik D, Gubiš J. 2012. Optimization of barleymature embryo regeneration and comparison with immatureembryos of local cultivars. Nova Biotechnologica et Chimica,11, 57-62

Gubler F, Kalla R, Roberts J K, Jacobsen J V. 1995. Gibberellinregulatedexpression of a myb gene in barley aleurone cells:evidence for Myb transactivation of a high-pI α-amylasegene promoter. The Plant Cell Online, 7, 1879-1891

Gürel F, Gözükirmizi N. 2000. Optimization of gene transferinto barley (Hordeum vulgare L.) mature embryos by tissueelectroporation. Plant Cell Reports, 19, 787-791

Gurushidze M, Hensel G, Hiekel S, Schedel S, Valkov V,Kumlehn J. 2014. True-breeding targeted gene knock-outin barley using designer TALE-nuclease in haploid cells.PLOS ONE, 9, e92046.

Ha C, Lemaux P, Cho M J. 2001. Stable transformation of arecalcitrant kentucky bluegrass (Poa pratensis L.) cultivarusing mature seed-derived highly regenerative tissues. InVitro Cellular & Developmental Biology-Plant, 37, 6-11

Han Y, Jin X L, Wu F B, Zhang G P. 2011. Genotypic differencesin callus induction and plant regeneration from matureembryos of barley (Hordeum vulgare L.). Journal of ZhejiangUniversity (Science B), 12, 399-407

Harwood W. 2014. A protocol for high-throughput Agrobacteriummediatedbarley transformation. In: Henry R J, Furtado A,eds., Cereal Genomics. Humana Press, New York, USA.pp. 251-260

Harwood W, Ross S, Bulley S, Travella S, Busch B, HardenJ, Snape J. 2002. Use of the firefly luciferase gene in abarley (Hordeum vulgare) transformation system. Plant CellReports, 21, 320-326

Harwood W A. 2012. Advances and remaining challenges in thetransformation of barley and wheat. Journal of ExperimentalBotany, 63, 1791-1798

He T, Jia J F. 2008. High frequency plant regeneration frommature embryo explants of highland barley (Hordeumvulgare L. var. nudum Hk. f.) under endosperm-supportedculture. Plant Cell, Tissue and Organ Culture, 95, 251-254

Hensel G, Kastner C, Oleszczuk S, Riechen J, Kumlehn J.2009. Agrobacterium-mediated gene transfer to cereal cropplants: Current protocols for barley, wheat, triticale, andmaize. International Journal of Plant Genomics, 2009, 9.

Hensel G, Valkov V, Middlefell-Williams J, Kumlehn J. 2008.Efficient generation of transgenic barley: The way forwardto modulate plant-microbe interactions. Journal of PlantPhysiology, 165, 71-82

Hiei Y, Komari T. 2008. Agrobacterium-mediated transformationof rice using immature embryos or calli induced from matureseed. Nature Protocols, 3, 824-834

Himmelbach A, Liu L, Zierold U, Altschmied L, Maucher H,Beier F, Müller D, Hensel G, Heise A, Schützendübel A,Kumlehn J, Schweizer P. 2010. Promoters of the barleygermin-like GER4 gene cluster enable strong transgeneexpression in response to pathogen attack. The Plant Cell Online, 22, 937-952

Holm P B, Knudsen S, Mouritzen P, Negri D, Olsen F L, RouéC. 1995. Regeneration of the barley zygote in ovule culture.Sexual Plant Reproduction, 8, 49-59

Holm P, Olsen O, Schnorf M, Brinch-Pedersen H, KnudsenS. 2000. Transformation of barley by microinjection intoisolated zygote protoplasts. Transgenic Research, 9, 21-32

Holme I, Brinch-Pedersen H, Lange M, Holm P. 2006.Transformation of barley (Hordeum vulgare L.) byAgrobacterium tumefaciens infection of in vitro culturedovules. Plant Cell Reports, 25, 1325-1335

Holme I, Brinch-Pedersen H, Lange M, Holm P. 2008.Transformation of different barley (Hordeum vulgare L.)cultivars by Agrobacterium tumefaciens infection of in vitrocultured ovules. Plant Cell Reports, 27, 1833-1840

Horvath H, Rostoks N, Brueggeman R, Steffenson B, WettsteinD V, Kleinhofs A. 2003. Genetically engineered stem rustresistance in barley using the Rpg1 gene. Proceedings ofthe National Academy of Sciences of the United States ofAmerica, 100, 364-369

Hua W, Zhu J, Shang Y, Wang J, Jia Q, Lin F, Yang J. 2013.Establishment of a highly efficient regeneration methodfrom the scraped broken embryo of mature barley seed.Canadian Journal of Plant Science, 93, 1029-1035

Hückelhoven R, Dechert C, Kogel K H. 2003. Overexpression ofbarley BAX inhibitor 1 induces breakdown of mlo-mediatedpenetration resistance to Blumeria graminis. Proceedingsof the National Academy of Sciences of the United Statesof America, 100, 5555-5560

Hückelhoven R. 2004. BAX Inhibitor-1, an ancient cell deathsuppressor in animals and plants with prokaryotic relatives.Apoptosis, 9, 299-307

IBSC (The International Barley Genome SequencingConsortium). 2012. A physical, genetic and functionalsequence assembly of the barley genome. Nature, 491,711-716

Iehisa J C M, Ohno R, Kimura T, Enoki H, Nishimura S,Okamoto Y, Nasuda S, Takumi S. 2014. A high-densitygenetic map with array-based markers facilitates structuraland quantitative trait locus analyses of the common wheatgenome. DNA Research, 21, 555-567

IWGSC (The International Wheat Genome SequencingConsortium). 2014. A chromosome-based draft sequenceof the hexaploid bread wheat (Triticum aestivum) genome.Science, 345, 1251788.

Jähne A, Becker D, Brettschneider R, Lörz H. 1994.Regeneration of transgenic, microspore-derived, fertilebarley. Theoretical and Applied Genetics, 89, 525-533

Jensen L G, Olsen O, Kops O, Wolf N, Thomsen K K, VonWettstein D. 1996. Transgenic barley expressing a proteinengineered,thermostable (1,3-1,4)-β-glucanase duringgermination. Proceedings of the National Academy ofSciences of the United States of America, 93, 3487-3491

Jeon J S, Lee S, Jung K H, Jun S H, Jeong D H, Lee J, KimC, Jang S, Lee S, Yang K, Nam J, An K, Han M J, Sung RJ, Choi H S, Yu J H, Choi J H, Cho S Y, Cha S S, Kim S I,et al. 2000. T-DNA insertional mutagenesis for functionalgenomics in rice. The Plant Journal, 22, 561-570

Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, PfeiferM, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, GaoC, Spannagl M, Mayer K F X, Li D, Pan S, Zheng F, et al.2013. Aegilops tauschii draft genome sequence reveals agene repertoire for wheat adaptation. Nature, 496, 91-95

Jiang J, Linscombe S D, Wang J, Oard J H. 2000. High efficiencytransformation of U.S. rice lines from mature seed-derivedcalli and segregation of glufosinate resistance under fieldconditions. Crop Science, 40, 1729-1741

Junker B, Zimny J, Lührs R, Lörz H. 1987. Transient expressionof chimaeric genes in dividing and non-dividing cerealprotoplasts after PEG-induced DNA uptake. Plant CellReports, 6, 329-332

Karaka? Ö, Uçarli C, Gözükirmizi N, Gürel F. 2011. Assessmentof barley (Hordeum vulgare L.) mature embryos forAgrobacterium-mediated transformation. Journal of AppliedBiological Sciences, 5, 55-58

Kartha K K, Chibbar R N, Georges F, Leung N, CaswellK, Kendall E, Qureshi J. 1989. Transient expression ofchloramphenicol acetyltransferase (CAT) gene in barleycell cultures and immature embryos through microprojectilebombardment. Plant Cell Reports, 8, 429-432

Kasha K J, Hu T C, Oro R, Simion E, Shim Y S. 2001. Nuclearfusion leads to chromosome doubline during mannitolpretreatment of barley (Hordeum vulgare L.) microspores.Journal of Experimental Botany, 52, 1227-1238

Kihara M, Okada Y, Kuroda H, Saeki K, Yoshigi N, Ito K. 2000.Improvement of β-amylase thermostability in transgenicbarley seeds and transgene stability in progeny. MolecularBreeding, 6, 511-517

Kim Y B, Garbisu C, Pickering I, Prince R, George G, Cho M J,Wong J, Buchanan B. 2003. Thioredoxin h overexpressedin barley seeds enhances selenite resistance and uptakeduring germination and early seedling development. Planta,218, 186-191

Kim Y, Schumaker K, Zhu J K. 2006. EMS mutagenesis ofArabidopsis. In: Salinas J, Sanchez-Serrano J, eds.,Arabidopsis Protocols. Humana Press, New York, USA.pp. 101-103

Klebe R J, Harriss J V, Sharp Z D, Douglas M G. 1983. Ageneral method for polyethylene-glycol-induced genetictransformation of bacteria and yeast. Gene, 25, 333-341

Klein T M. 2011. Particle bombardment: An established weaponin the arsenal of plant biotechnologists. In: Stewart Jr C,Touraev A, Citovsky V, Tzfira T, eds., Plant TransformationTechnologies. Chichester, West Sussex, John Wiley & SonsLtd., UK. pp. 53-71.

Koba T, Handa T, Shimada T. 1991. Efficient production ofwheat-barley hybrids and preferential elimination of barleychromosomes. Theoretical and Applied Genetics, 81,285-292

Koprek T, McElroy D, Louwerse J, Williams-Carrier R, LemauxP G. 2000. An efficient method for dispersing Ds elements inthe barley genome as a tool for determining gene function. The Plant Journal, 24, 253-263

Kovalchuk N, Jia W, Eini O, Morran S, Pyvovarenko T, FletcherS, Bazanova N, Harris J, Beck-Oldach K, Shavrukov Y,Langridge P, Lopato S. 2013. Optimization of TaDREB3gene expression in transgenic barley using cold-induciblepromoters. Plant Biotechnology Journal, 11, 659-670

Krens F A, Molendijk L, Wullems G J, Schilperoort R A. 1982.In vitro transformation of plant protoplasts with Ti-plasmidDNA. Nature, 296, 72-74

Kumlehn J, Serazetdinova L, Hensel G, Becker D, Loerz H.2006. Genetic transformation of barley (Hordeum vulgareL.) via infection of androgenetic pollen cultures withAgrobacterium tumefaciens. Plant Biotechnology Journal,4, 251-261

Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, CitovskyV. 2001. Genetic transformation of HeLa cells byAgrobacterium. Proceedings of the National Academy ofSciences of the United States of America, 98, 1871-1876

Lazarow K, Lutticke S. 2009. An Ac/Ds-mediated gene trapsystem for functional genomics in barley. BMC Genomics,10, 55.Lazzeri P A, Brettschneider R, Lührs R, Lörz H. 1991.Stable transformation of barley via PEG-induced direct DNAuptake into protoplasts. Theoretical and Applied Genetics,81, 437-444

Leckband G, Lörz H. 1998. Transformation and expression ofa stilbene synthase gene of Vitis vinifera L. in barley andwheat for increased fungal resistance. Theoretical andApplied Genetics, 96, 1004-1012

Lee B T, Murdoch K, Topping J, Jones M G K, Kreis M. 1991.Transient expression of foreign genes introduced into barleyendosperm protoplasts by PEG-mediated transfer or intointact endosperm tissue by microprojectile bombardment.Plant Science, 78, 237-246

Li D, Liao Y, Li H. 2012. Transformation of shoot apicalmeristems of elite barley cultivars via Agrobacteriummediated transformation. Journal of Triticeae Crops, 32,44-47

Li Q Y, Niu H B, Yin J, Shao H B, Niu J S, Ren J P, Li Y C,Wang X. 2010. Transgenic barley with overexpressed PTrxincreases aluminum resistance in roots during germination.Journal of Zhejiang University (Science B), 11, 862-870

Ling H Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D,Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S,Wang B, Yu K, Liang Q, Yang W, et al. 2013. Draft genomeof the wheat A-genome progenitor Triticum urartu. Nature,496, 87-90

Liu L, Yin J. 2005. Effects of trxs gene on germination oftransgenic barley seeds. Acta Agronomica Sinica, 31,1562-1566

 (in Chinese)Lupotto E. 1984. Callus induction and plant regeneration frombarley mature embryos. Annals of Botany, 54, 523-530

Lü B, Qi X, Yun Y, Wu J, Fu D. 2014. Development of tenthousand EMS mutants in barley ‘Tamalpais’. In: 1stInternational Workshop on Barley Mutant Research.Gatersleben, Germany.Manoharan M, Dahleen L. 2002. Genetic transformation of thecommercial barley (Hordeum vulgare L.) cultivar Conlonby particle bombardment of callus. Plant Cell Reports, 21,76-80

Manoharan M, Dahleen L S, Hohn T M, Neate S M, Yu X H,Alexander N J, McCormick S P, Bregitzer P, Schwarz PB, Horsley R D. 2006. Expression of 3-OH trichotheceneacetyltransferase in barley (Hordeum vulgare L.) and effectson deoxynivalenol. Plant Science, 171, 699-706

Marcussen T, Sandve S R, Heier L, Spannagl M, Pfeifer M,The International Wheat Genome Sequencing Consortium,Jakobsen K S, Wulff B B H, Steuernagel B, Mayer K FX, Olsen O A. 2014. Ancient hybridizations among theancestral genomes of bread wheat. Science, 345, 1250092.

Mart??n A, Alvarez J B, Mart??n L M, Barro F, Ballesteros J. 1999.The development of Tritordeum: A novel cereal for foodprocessing. Journal of Cereal Science, 30, 85-95

Mayer K F X, Martis M, Hedley P E, Šimková H, Liu H, MorrisJ A, Steuernagel B, Taudien S, Roessner S, GundlachH, Kubaláková M, Suchánková P, Murat F, Felder M,Nussbaumer T, Graner A, Salse J, Endo T, Sakai H,Tanaka T, et al. 2011. Unlocking the barley genome bychromosomal and comparative genomics. The Plant CellOnline, 23, 1249-1263

McCormac A, Wu H, Bao M, Wang Y, Xu R, Elliott M, Chen DF. 1998. The use of visual marker genes as cell-specificreporters of Agrobacterium-mediated T-DNA delivery towheat (Triticum aestivum L.) and barley (Hordeum vulgareL.). Euphytica, 99, 17-25

McGrath P F, Vincent J R, Lei C H, Pawlowski W P, Torbert KA, Gu W, Kaeppler H F, Wan Y, Lemaux P G, Rines H R,Somers D A, Larkins B A, Lister R M. 1997. Coat proteinmediatedresistance to isolates of barley yellow dwarf inoats and barley. European Journal of Plant Pathology,103, 695-710

Michielse C, Hooykaas P J, van den Hondel C M J J, Ram A J.2005. Agrobacterium-mediated transformation as a tool forfunctional genomics in fungi. Current Genetics, 48, 1-17

Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, IsmagulA, Eliby S, Shirley N, Langridge P, Lopato S. 2011.Improvement of stress tolerance of wheat and barley bymodulation of expression of DREB/CBF factors. PlantBiotechnology Journal, 9, 230-249

Mrízová K, Holasková E, Tufan Ö M, Jiskrová E, Frébort I,Galuszka P. 2014. Transgenic barley: A prospective toolfor biotechnology and agriculture. Biotechnology Advances,32, 137-157

Murray F, Brettell R, Matthews P, Bishop D, Jacobsen J. 2004.Comparison of Agrobacterium-mediated transformation offour barley cultivars using the GFP and GUS reporter genes.Plant Cell Reports, 22, 397-402

Murray F, Matthews P, Jacobsen J, Gubler F. 2006. Increasedexpression of HvGAMYB in transgenic barley increaseshydrolytic enzyme production by aleurone cells in responseto gibberellin. Journal of Cereal Science, 44, 317-322

Nair R, Varghese S H, Nair B G, Maekawa T, Yoshida Y, Kumar D S. 2010. Nanoparticulate material delivery to plants. PlantScience, 179, 154-163

Nevo E. 2013. Evolution of wild barley and barley improvement.In: Zhang G, Li C, Liu X, eds., Advance in Barley Sciences.Springer, Netherlands. pp. 1-23

Nobre J, Davey M R, Lazzeri P A, Cannell M E. 2000.Transformation of barley scutellum protoplasts:Regeneration of fertile transgenic plants. Plant Cell Reports,19, 1000-1005

Nussbaumer T, Spannagl M, Bader K C, Pfeifer M, Mayer K.2014. CrowsNest: A tool to visualize synteny between plantgenomes including recently published cereal genomes ofAegilops tauschii and Hordeum vulgare. Plant and AnimalGenome XXII Conference, Jan.10-15, San Diego, CA, USA.

Nuutila A M, Ritala A, Skadsen R W, Mannonen L, KauppinenV. 1999. Expression of fungal thermotolerant endo-1,4-β-glucanase in transgenic barley seeds during germination.Plant Molecular Biology, 41, 777-783

O’Brien J, Lummis S. 2011. Nano-biolistics: A method of biolistictransfection of cells and tissues using a gene gun with novelnanometer-sized projectiles. BMC Biotechnology, 11, 66.

Ohnoutkova L, Zitka O, Mrizova K, Vaskova J, Galuszka P,Cernei N, Smedley M A, Harwood W A, Adam V, Kizek R.2012. Electrophoretic and chromatographic evaluation oftransgenic barley expressing a bacterial dihydrodipicolinatesynthase. Electrophoresis, 33, 2365-2373

Patel M, Johnson J, Brettell R S, Jacobsen J, Xue G P. 2000.Transgenic barley expressing a fungal xylanase gene in theendosperm of the developing grains. Molecular Breeding,6, 113-124

Paterson A H, Bowers J E, Bruggmann R, Dubchak I, GrimwoodJ, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A,Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, BhartiA K, Chapman J, Feltus F A, Gowik U, Grigoriev I V, et al.2009. The Sorghum bicolor genome and the diversificationof grasses. Nature, 457, 551-556

Patnaik D, Vishnudasan D, Khurana P. 2006. Agrobacteriummediatedtransformation of mature embryos of Triticumaestivum and Triticum durum. Current Science, 91,307-317

Pereira J F, Zhou G, Delhaize E, Richardson T, Zhou M, RyanP R. 2010. Engineering greater aluminium resistance inwheat by over-expressing TaALMT1. Annals of Botany,106, 205-214

Pitzschke A, Hirt H. 2010. New insights into an old story:Agrobacterium-induced tumour formation in plants by planttransformation. The EMBO Journal, 29, 1021-1032

Pons M J, Marfà V, Melé E, Messeguer J. 2000. Regenerationand genetic transformation of Spanish rice cultivars usingmature embryos. Euphytica, 114, 117-122

Potter H. 1988. Electroporation in biology: Methods, applications,and instrumentation. Analytical Biochemistry, 174, 361-373

Proels R K, Oberhollenzer K, Pathuri I P, Hensel G, KumlehnJ, Hückelhoven R. 2010. RBOHF2 of barley is requiredfor normal development of penetration resistance to theparasitic fungus Blumeria graminis f. sp. hordei. MolecularPlant-Microbe Interactions, 23, 1143-1150

Rahnamaeian M, Langen G, Imani J, Khalifa W, Altincicek B,von Wettstein D, Kogel K H, Vilcinskas A. 2009. Insectpeptide metchnikowin confers on barley a selective capacityfor resistance to fungal ascomycetes pathogens. Journal ofExperimental Botany, 60, 4105-4114

Ramesh S, Choimes S, Schachtman D. 2004. Over-expressionof an Arabidopsis zinc transporter in Hordeum vulgareincreases short-term zinc uptake after zinc deprivation andseed zinc content. Plant Molecular Biology, 54, 373-385

Risk J M, Selter L L, Chauhan H, Krattinger S G, Kumlehn J,Hensel G, Viccars L A, Richardson T M, Buesing G, TrollerA, Lagudah E S, Keller B. 2013. The wheat Lr34 geneprovides resistance against multiple fungal pathogens inbarley. Plant Biotechnology Journal, 11, 847-854

Ritala A, Wahlström E H, Holkeri H, Hafren A, Mäkeläinen K,Baez J, Mäkinen K, Nuutila A M. 2008. Production of arecombinant industrial protein using barley cell cultures.Protein Expression and Purification, 59, 274-281

Rotem-Abarbanell D, Breiman A. 1989. Plant regeneration fromimmature and mature embryo derived calli of Hordeummarinum. Plant Cell, Tissue and Organ Culture, 16,207-216

Ruiz M L, Vázquez A M. 1982. Chromosome number evolutionin stem derived calluses of Hordeum vulgare L. cultured invitro. Protoplasma, 111, 83-86

Salmenkallio-Marttila M, Aspegren K, Åkerman S, Kurtén U,Mannonen L, Ritala A, Teeri T H, Kauppinen V. 1995.Transgenic barley (Hordeum vulgare L.) by electroporationof protoplasts. Plant Cell Reports, 15, 301-304

Salmenkallio M, Hannus R, Teeri T H, Kauppinen V. 1990.Regulation of α-amylase promoter by gibberellic acidand abscisic acid in barley protoplasts transformed byelectroporation. Plant Cell Reports, 9, 352-355

Schilling R K, Marschner P, Shavrukov Y, Berger B, Tester M,Roy S J, Plett D C. 2014. Expression of the Arabidopsisvacuolar H+-pyrophosphatase gene (AVP1) improves theshoot biomass of transgenic barley and increases grain yieldin a saline field. Plant Biotechnology Journal, 12, 378-386

Schnable P S, Ware D, Fulton R S, Stein J C, Wei F, PasternakS, Liang C, Zhang J, Fulton L, Graves T A, Minx P, ReilyA D, Courtney L, Kruchowski S S, Tomlinson C, StrongC, Delehaunty K, Fronick C, Courtney B, Rock S M, et al.2009. The B73 maize genome: Complexity, diversity, anddynamics. Science, 326, 1112-1115

Schultheiss H, Hensel G, Imani J, Broeders S, SonnewaldU, Kogel K H, Kumlehn J, Hückelhoven R. 2005. Ectopicexpression of constitutively activated RACB in barleyenhances susceptibility to powdery mildew and abioticstress. Plant Physiology, 139, 353-362

Schünmann P D, Coia G, Waterhouse P. 2002. Biopharmingthe SimpliRED™ HIV diagnostic reagent in barley, potatoand tobacco. Molecular Breeding, 9, 113-121

Seiler C, Harshavardhan V T, Reddy P S, Hensel G, KumlehnJ, Eschen-Lippold L, Rajesh K, Korzun V, Wobus U, LeeJ, Selvaraj G, Sreenivasulu N. 2014. Abscisic acid flux alterations result in differential abscisic acid signalingresponses and impact assimilation efficiency in barley underterminal drought stress. Plant Physiology, 164, 1677-1696

?ener O, Can E, Arslan M, Çeli? N. 2008. Effects of genotypeand picloram concentrations on callus induction andplant regeneration from immature inflorescence of springbarley cultivars (Hordeum vulgare L.). Biotechnology &Biotechnological Equipment, 22, 915-920

Sharma V, Hänsch R, Mendel R, Schulze J. 2004. A highlyefficient plant regeneration system through multiple shootdifferentiation from commercial cultivars of barley (Hordeumvulgare L.) using meristematic shoot segments excised fromgerminated mature embryos. Plant Cell Reports, 23, 9-16

Sharma V K, Hänsch R, Mendel R R, Schulze J. 2005. Matureembryo axis-based high frequency somatic embryogenesisand plant regeneration from multiple cultivars of barley(Hordeum vulgare L.). Journal of Experimental Botany,56, 1913-1922

Sharma V, Hänsch R, Mendel R, Schulze J. 2007. Node-derivedcultures with high-morphogenic competence in barley andwheat. Plant Cell, Tissue and Organ Culture, 88, 21-33

Shim Y S, Pauls K P, Kasha K J. 2009. Transformation ofisolated barley (Hordeum vulgare L.) microspores: I. Theinfluence of pretreatments and osmotic treatment on thetime of DNA synthesis. Genome, 52, 166-174

Shrawat A K, Becker D, Lörz H. 2007. Agrobacteriumtumefaciens-mediated genetic transformation of barley(Hordeum vulgare L.). Plant Science, 172, 281-290

Singh J, Zhang S, Chen C, Cooper L, Bregitzer P, SturbaumA, Hayes P, Lemaux P. 2006. High-frequency Dsremobilization over multiple generations in barley facilitatesgene tagging in large genome cereals. Plant MolecularBiology, 62, 937-950

Soltész A, Smedley M, Vashegyi I, Galiba G, Harwood W,Vágújfalvi A. 2013. Transgenic barley lines prove theinvolvement of TaCBF14 and TaCBF15 in the coldacclimation process and in frost tolerance. Journal ofExperimental Botany, 64, 1849-1862

Soltész A, Vágújfalvi A, Rizza F, Kerepesi I, Galiba G, CattivelliL, Coraggio I, Crosatti C. 2012. The rice Osmyb4 geneenhances tolerance to frost and improves germination underunfavourable conditions in transgenic barley plants. Journalof Applied Genetics, 53, 133-143

Stein N, Perovic D, Kumlehn J, Pellio B, Stracke S, StrengS, Ordon F, Graner A. 2005. The eukaryotic translationinitiation factor 4E confers multiallelic recessive Bymovirusresistance in Hordeum vulgare (L.). The Plant Journal, 42,912-922

Sticklen M, Oraby H. 2005. Shoot apical meristem: A sustainableexplant for genetic transformation of cereal crops. In VitroCellular & Developmental Biology-Plant, 41, 187-200

Tiidema A N U, Truve E. 2004. Efficient regeneration of fertilebarley plants from callus cultures of several Nordic cultivars.Hereditas, 140, 171-176

Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S,Brettell R. 1997. Agrobacterium tumefaciens-mediatedbarley transformation. The Plant Journal, 11, 1369-1376

Tiong J, McDonald G K, Genc Y, Pedas P, Hayes J E, ToubiaJ, Langridge P, Huang C Y. 2014. HvZIP7 mediates zincaccumulation in barley (Hordeum vulgare) at moderatelyhigh zinc supply. New Phytologist, 201, 131-143

Torbert K A, Rines H W, Somers D A. 1998. Transformationof oat using mature embryo-derived tissue cultures. CropScience, 38, 226-231

Toyoda H, Yamaga T, Matsuda Y, Ouchi S. 1990. Transientexpression of the β-glucuronidase gene introduced intobarley coleoptile cells by microinjection. Plant Cell Reports,9, 299-302

Travella S, Ross S M, Harden J, Everett C, Snape J W, HarwoodW A. 2005. A comparison of transgenic barley linesproduced by particle bombardment and Agrobacteriummediatedtechniques. Plant Cell Reports, 23, 780-789

Trifonova A, Madsen S, Olesen A. 2001. Agrobacteriummediatedtransgene delivery and integration into barleyunder a range of in vitro culture conditions. Plant Science,161, 871-880

Tull D, Phillipson B A, Kramhøft B, Knudsen S, Olsen O,Svensson B. 2003. Enhanced amylolytic activity ingerminating barley through synthesis of a bacterial alpha-amylase. Journal of Cereal Science, 37, 71-80

Wan Y, Lemaux P G. 1994. Generation of large numbersof independently transformed fertile barley plants. PlantPhysiology, 104, 37-48

Wang M B, Abbott D C, Upadhyaya N M, Jacobsen J V,Waterhouse P M. 2001. Agrobacterium tumefaciensmediatedtransformation of an elite Australian barley cultivarwith virus resistance and reporter genes. Australian Journalof Plant Physiology, 28, 149-156

Wang M B, Abbott D C, Waterhouse P M. 2000. A single copyof a virus-derived transgene encoding hairpin RNA givesimmunity to barley yellow dwarf virus. Molecular PlantPathology, 1, 347-356

Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL. 2014. Simultaneous editing of three homoeoalleles inhexaploid bread wheat confers heritable resistance topowdery mildew. Nat Biotech, 32, 947-951

WAP (World Agricultural Production). 2014. World AgriculturalProduction. Circular Series, WAP. pp. 9-14

Wendt T, Holm P, Starker C, Christian M, Voytas D, Brinch-Pedersen H, Holme I. 2013. TAL effector nucleases inducemutations at a pre-selected location in the genome ofprimary barley transformants. Plant Molecular Biology, 83,279-285

Wu H, McCormac A, Elliott M, Chen D F. 1998. Agrobacteriummediatedstable transformation of cell suspension culturesof barley (Hordeum vulgare). Plant Cell, Tissue and OrganCulture, 54, 161-171

Xu M, Gruber B D, Delhaize E, White R G, James R A, YouJ, Yang Z, Ryan P R. 2015. The barley anion channel,HvALMT1, has multiple roles in guard cell physiology andgrain metabolism. Physiologia Plantarum, 153, 183-193

Xue G P, Patel M, Johnson J S, Smyth D J, Vickers C E. 2003. Selectable marker-free transgenic barley producing a highlevel of cellulase (1,4-β-glucanase) in developing grains.Plant Cell Reports, 21, 1088-1094

Yadav T, Kachhwaha S, Kothari S L. 2013. Efficient in vitro plantregeneration and generation of transgenic plants in barley(Hordeum vulgare L.) using particle bombardment. Journalof Plant Biochemistry and Biotechnology, 22, 202-213

Yu J, Hu S, Wang J, Wong G K S, Li S, Liu B, Deng Y, Dai L,Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y,Huang X, Lin W, Ye C, Tong W, Cong L, et al. 2002. A draftsequence of the rice genome (Oryza sativa L. ssp. indica).Science, 296, 79-92

Zapata J M, Sabater B, Martín M. 2004. Callus induction andin vitro regeneration from barley mature embryos. BiologiaPlantarum, 48, 473-476

Zhang S, Cho M J, Koprek T, Yun R, Bregitzer P, Lemaux P G.1999. Genetic transformation of commercial cultivars of oat(Avena sativa L.) and barley (Hordeum vulgare L.) using invitro shoot meristematic cultures derived from germinatedseedlings. Plant Cell Reports, 18, 959-966

Zhao T, Palotta M, Langridge P, Prasad M, Graner A, Schulze-Lefert P, Koprek T. 2006. Mapped Ds/T-DNA launch padsfor functional genomics in barley. The Plant Journal, 47,811-826

Zhou G, Delhaize E, Zhou M, Ryan P R. 2013. The barleyMATE gene, HvAACT1, increases citrate efflux and Al3+tolerance when expressed in wheat and barley. Annals ofBotany, 112, 603-612

Zhou G, Pereira J F, Delhaize E, Zhou M, Magalhaes J V, RyanP R. 2014. Enhancing the aluminium tolerance of barleyby expressing the citrate transporter genes SbMATE andFRD3. Journal of Experimental Botany, 65, 2381-2390
[1] HONG Ye, ZHANG Guo-ping. The influence of drought stress on malt quality traits of the wild and cultivated barleys[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2009-2015.
[2] Marcelina Krupa-Ma?kiewicz, Jan Oszmiański, Sabina Lachowicz, Ma?gorzata Szczepanek, Bogus?awa Ja?kiewicz, Kamila Pachnowska, Ireneusz Ochmian.
Effect of nanosilver (nAg) on disinfection, growth, and chemical composition of young barley leaves under in vitro conditions
[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1871-1881.
[3] XIAO Qi-sheng, XU Wen-tao, YANG Jie-lin, PAN Liang-wen. Evaluation of genetically modified rice detection methods 2011/884/ EU and 2008/289/EC proposed by the European Union[J]. >Journal of Integrative Agriculture, 2016, 15(12): 2899-2910.
[4] ZHANG Wei, WANG Xin-min, FAN Rong, YIN Gui-xiang, WANG Ke, DU Li-pu, XIAO Le-le, YE Xing-guo . Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos[J]. >Journal of Integrative Agriculture, 2015, 14(1): 11-19.
[5] WANG Xin-min; REN Xian; YIN Gui-xiang; WANG Ke; LI Jia-rui; DU Li-pu; XU Hui-jun ;. Effects of Environmental Temperature on the Regeneration Frequency of the Immature Embryos of Wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2014, 13(4): 722-732.
[6] ZHANG Xiao-qin, XUE Da-wei, WU Fei-bo , ZHANG Guo-ping. Genotypic and Environmental Variations of Arabinoxylan Content and Endoxylanase Activity in Barley Grains[J]. >Journal of Integrative Agriculture, 2013, 12(8): 1489-1494.
No Suggested Reading articles found!