Please wait a minute...
Journal of Integrative Agriculture  2015, Vol. 14 Issue (2): 208-216    DOI: 10.1016/S2095-3119(14)60889-3
Section 1: Technical aspects of artificial meat Advanced Online Publication | Current Issue | Archive | Adv Search |
Alternatives for large-scale production of cultured beef: A review
 Matilda S M Moritz, Sanne E L Verbruggen, Mark J Post
1、Department of Physiology, Maastricht University, Maastricht 6229 ER, The Netherlands
2、Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Cultured beef is a method where stem cells from skeletal muscle of cows are cultured in vitro to gain edible muscle tissue. For large-scale production of cultured beef, the culture technique needs to become more efficient than today’s 2-dimensional (2D) standard technique that was used to make the first cultured hamburger. Options for efficient large-scale production of stem cells are to culture cells on microcarriers, either in suspension or in a packed bed bioreactor, or to culture aggregated cells in suspension. We discuss the pros and cons of these systems as well as the possibilities to use the systems for tissue culture. Either of the production systems needs to be optimized to achieve an efficient production of cultured beef. It is anticipated that the optimization of large-scale cell culture as performed for other stem cells can be translated into successful protocols for bovine satellite cells resulting in resource and cost efficient cultured beef.

Abstract  Cultured beef is a method where stem cells from skeletal muscle of cows are cultured in vitro to gain edible muscle tissue. For large-scale production of cultured beef, the culture technique needs to become more efficient than today’s 2-dimensional (2D) standard technique that was used to make the first cultured hamburger. Options for efficient large-scale production of stem cells are to culture cells on microcarriers, either in suspension or in a packed bed bioreactor, or to culture aggregated cells in suspension. We discuss the pros and cons of these systems as well as the possibilities to use the systems for tissue culture. Either of the production systems needs to be optimized to achieve an efficient production of cultured beef. It is anticipated that the optimization of large-scale cell culture as performed for other stem cells can be translated into successful protocols for bovine satellite cells resulting in resource and cost efficient cultured beef.
Keywords:  cultured beef       microcarriers       aggregated cells       packed bed bioreactor       cell culture  
Received: 03 April 2014   Accepted:
Corresponding Authors:  Mark J Post,Tel: +31-43-3881200, Mobile: +31-6-46705558, Fax: +31-43- 3884166, E-mail: m.post@maastrichtuniversity.nl     E-mail:  m.post@maastrichtuniversity.nl
About author:  Matilda S M Moritz, E-mail: matilda.moritz@maastrichtuniversity. nl, matmo608@student.liu.se;

Cite this article: 

Matilda S M Moritz, Sanne E L Verbruggen, Mark J Post. 2015. Alternatives for large-scale production of cultured beef: A review. Journal of Integrative Agriculture, 14(2): 208-216.

Abbasalizadeh S, Larijani M R, Samadian A, Baharvand H.2012. Bioprocess development for mass production ofsize-controlled human pluripotent stem cell aggregates instirred suspension bioreactor. Tissue Engineering (Part C:Methods), 18, 831-851

Amit M, Chebath J, Margulets V, Laevsky I, Miropolsky Y,Shariki K, Peri M, Blais I, Slutsky G, Revel M. 2010.Suspension culture of undifferentiated human embryonicand induced pluripotent stem cells. Stem Cell Reviews andReports, 6, 248-259

Amit M, Laevsky I, Miropolsky Y, Shariki K, Peri M, Itskovitz-Eldor J. 2011. Dynamic suspension culture for scalableexpansion of undifferentiated human pluripotent stem cells.Nature Protocols, 6, 572-579

Bardouille C, Lehmann J, Heimann P, Jockusch H. 2001.Growth and differentiation of permanent and secondarymouse myogenic cell lines on microcarriers. AppliedMicrobiology and Biotechnology, 55, 556-562

Bashan N, Burdett E, Hundal H S, Klip A. 1992. Regulationof glucose transport and GLUT1 glucose transporterexpression by O2 in muscle cells in culture. AmericanJournal of Physiology (Cell Physiology), 262, C682-C690.

Bohmann A, Pörtner R, Schmieding J, Kasche V, Märkl H. 1992.The membrane dialysis bioreactor with integrated radialflowfixed bed—a new approach for continuous cultivationof animal cells. Cytotechnology, 9, 51-57

Boudreault P, Tremblay J P, Pépin M F, Garnier A. 2001. Scaleupof a myoblast culture process. Journal of Biotechnology,91, 63-74

Chakravarthy M, Spangenburg E, Booth F. 2001. Culture in lowlevels of oxygen enhances in vitro proliferation potentialof satellite cells from old skeletal muscles. Cellular andMolecular Life Sciences, 58, 1150-1158

Chen V C, Couture S M, Ye J, Lin Z, Hua G, Huang H I P, WuJ, Hsu D, Carpenter M K, Couture L A. 2012. Scalable GMPcompliant suspension culture system for human ES cells.Stem Cell Research, 8, 388-402

Chen X, Xu H, Wan C, Mccaigue M, Li G. 2006. Bioreactorexpansion of human adult bone marrow-derivedmesenchymal stem cells. Stem Cells, 24, 2052-2059

Chiou T W, Murakami S, Wang D I C. 1991. A fiber bedbioreactor for anchorage-dependent animal cell cultures:Part I. Bioreactor design and operations. Biotechnologyand Bioengineering, 37, 755-761

Collins C A, Olsen I, Zammit P S, Heslop L, Petrie A, PartridgeT A, Morgan J E. 2005. Stem cell function, self-renewal,and behavioral heterogeneity of cells from the adult musclesatellite cell niche. Cell, 122, 289-301

Cong C, Chang Y, Deng J, Xiao C, Su Z. 2001. A novel scaleupmethod for mammalian cell culture in packed-bedbioreactor. Biotechnology Letters, 23, 881-885

Cormier J T, Nieden N I Z, Rancourt D E, Kallos M S. 2006.Expansion of undifferentiated murine embryonic stem cellsas aggregates in suspension culture bioreactors. TissueEngineering, 12, 3233-3245

Csete M. 2005. Oxygen in the cultivation of stem cells. Annalsof the New York Academy of Sciences, 1049, 1-8

Dürrschmid M, Landauer K, Simic G, Blüml G, Doblhoff-DierO. 2003. Scalable inoculation strategies for microcarrierbasedanimal cell bioprocesses. Biotechnology andBioengineering, 83, 681-686

Egbert R, Borders C. 2006. Achieving success with meatanalogs. Food Technology, 60, 28.

Fluri D A, Tonge P D, Song H, Baptista R P, Shakiba N, Shukla S, Clarke G, Nagy A, Zandstra P W. 2012. Derivation,expansion and differentiation of induced pluripotent stemcells in continuous suspension cultures. Nature Methods,9, 509-516

Goh T, Zhang Z, Chen A, Reuveny S, Choolani M, Chan J K,Oh S K. 2013. Microcarrier culture for efficient expansionand osteogenic differentiation of human fetal mesenchymalstem cells. BioResearch Open Access, 2, 84-97

Grayson W L, Zhao F, Bunnell B, Ma T. 2007. Hypoxiaenhances proliferation and tissue formation of humanmesenchymal stem cells. Biochemical and BiophysicalResearch Communications, 358, 948-953

Grayson W L, Zhao F, Izadpanah R, Bunnell B, Ma T. 2006.Effects of hypoxia on human mesenchymal stem cellexpansion and plasticity in 3D constructs. Journal of CellularPhysiology, 207, 331-339

Greene E, Allen R. 1991. Growth factor regulation of bovinesatellite cell growth in vitro. Journal of Animal Science, 69,146-152

Krawetz R J, Taiani J, Greene A, Kelly G M, Rancourt D E.2011. Inhibition of Rho kinase regulates specification ofearly differentiation events in P19 embryonal carcinomastem cells. PLoS ONE, 6, e26484.

Larijani M R, Seifinejad A, Pournasr B, Hajihoseini V, HassaniS N, Totonchi M, Yousefi M, Shamsi F, Salekdeh GH, Baharvand H. 2011. Long-term maintenance ofundifferentiated human embryonic and induced pluripotentstem cells in suspension. Stem Cells and Development,20, 1911-1923

Luo F, Sun H, Geng T, Qi N. 2008. Application of Taguchi’smethod in the optimization of bridging efficiency betweenconfluent and fresh microcarriers in bead-to-bead transferof Vero cells. Biotechnology Letters, 30, 645-649

Marks D M. 2003. Equipment design considerations for largescale cell culture. Cytotechnology, 42, 21-33

Meuwly F, Ruffieux P A, Kadouri A, Von Stockar U. 2007.Packed-bed bioreactors for mammalian cell culture:Bioprocess and biomedical applications. BiotechnologyAdvances, 25, 45-56

Mitalipova M M, Rao R R, Hoyer D M, Johnson J A, MeisnerL F, Jones K L, Dalton S, Stice S L. 2005. Preserving thegenetic integrity of human embryonic stem cells. NatureBiotechnology, 23, 19-20

Molnar G, Schroedl N A, Gonda S R, Hartzell C R. 1997. Skeletalmuscle satellite cells cultured in simulated microgravity. InVitro Cellular Developmental Biology, 33, 386-391

Neumann T, Hauschka S D, Sanders J E. 2003. Tissueengineering of skeletal muscle using polymer fiber arrays.Tissue Engineering, 9, 995-1003

Ng Y C, Berry J, Butler M. 1996. Optimization of physicalparameters for cell attachment and growth on macroporousmicrocarriers. Biotechnology and Bioengineering, 50,627-635

Oh S K W, Chen A K, Mok Y, Chen X, Lim U M, Chin A,Choo A B H, Reuveny S. 2009. Long-term microcarriersuspension cultures of human embryonic stem cells. StemCell Research, 2, 219-230

Ozturk S, Thrift J, Blackie J, Naveh D. 1997. Real-timemonitoring and control of glucose and lactate concentrationsin a mammalian cell perfusion reactor. Biotechnology andBioengineering, 53, 372-378

Park S, Stephanopoulos G. 1993. Packed bed bioreactor withporous ceramic beads for animal cell culture. Biotechnologyand Bioengineering, 41, 25-34

Park Y, Chen Y, Ordovas L, Verfaillie C M. 2014. Hepaticdifferentiation of human embryonic stem cells onmicrocarriers. Journal of Biotechnology, 174, 39-48.

Persson K M, Karlsson R, Svennersten K, Löffler S, Jager EW, Richter-Dahlfors A, Konradsson P, Berggren M. 2011.Electronic control of cell detachment using a self-dopedconducting polymer. Advanced Materials, 23, 4403-4408

De Peppo G M, Sladkova M, Sjövall P, Palmquist A, Oudina K,Hyllner J, Thomsen P, Petite H, Karlsson C. 2013. Humanembryonic stem cell-derived mesodermal progenitorsdisplay substantially increased tissue formation comparedto human mesenchymal stem cells under dynamic cultureconditions in a packed Bed/Column bioreactor. TissueEngineering (Part A), 19, 175-187

Phillips B W, Horne R, Lay T S, Rust W L, Teck T T, CrookJ M. 2008. Attachment and growth of human embryonicstem cells on microcarriers. Journal of Biotechnology,138, 24-32

Pierce L N, Shabram P. 2004. Scalability of a disposablebioreactor from 25L-500L run in perfusion mode with a CHObasedcell line: A tech review. BioProcessing Journal, 3, 51.

Post M J, Van Der Weele C. 2014. Principles of tissueengineering for food. In: Lanza R, Langer R, Vacanti J P,eds., Principles of Tissue Engineering. 4th ed. Elsevier,Amsterdam.Reuveny S. 1990. Microcarrier culture systems. BioprocessTechnology, 10, 271-341

Rodolfi L, Zittelli G C, Barsanti L, Rosati G, Tredici M R. 2003.Growth medium recycling in Nannochloropsis sp. masscultivation. Biomolecular Engineering, 20, 243-248

Sart S, Agathos S N, Li Y. 2013. Engineering stem cell fate withbiochemical and biomechanical properties of microcarriers.Biotechnology Progress, 29, 1354-1366

Sart S, Schneider Y J, Agathos S N. 2009. Ear mesenchymalstem cells: An efficient adult multipotent cell population fitfor rapid and scalable expansion. Journal of Biotechnology,139, 291-299

Schop D, Janssen F, Borgart E, De Bruijn J, Van Dijkhuizen-Radersma R. 2008. Expansion of mesenchymal stemcells using a microcarrier-based cultivation system: growthand metabolism. Journal of Tissue Engineering andRegenerative Medicine, 2, 126-135

Singh H, Mok P, Balakrishnan T, Rahmat S N B, Zweigerdt R.2010. Up-scaling single cell-inoculated suspension cultureof human embryonic stem cells. Stem Cell Research, 4,165-179

Steiner D, Khaner H, Cohen M, Even-Ram S, Gil Y, ItsyksonP, Turetsky T, Idelson M, Aizenman E, Ram R, Berman Zaken Y, Reubinoff B. 2010. Derivation, propagation andcontrolled differentiation of human embryonic stem cells insuspension. Nature Biotechnology, 28, 361-364

Suemori H, Yasuchika K, Hasegawa K, Fujioka T, TsuneyoshiN, Nakatsuji N. 2006. Efficient establishment of humanembryonic stem cell lines and long-term maintenance withstable karyotype by enzymatic bulk passage. Biochemicaland Biophysical Research Communications, 345, 926-932

Tamura A, Kobayashi J, Yamato M, Okano T. 2012.Temperature-responsive poly(N-isopropylacrylamide)-grafted microcarriers for large-scale non-invasive harvest ofanchorage-dependent cells. Biomaterials, 33, 3803-3812

Tatsumi R, Anderson J E, Nevoret C J, Halevy O, Allen R E.1998. HGF/SF is present in normal adult skeletal muscleand is capable of activating satellite cells. DevelopmentalBiology, 194, 114-128

Torgan C, Burge S, Collinsworth A, Truskey G, Kraus W. 2000.Differentiation of mammalian skeletal muscle cells culturedon microcarrier beads in a rotating cell culture system.Medical and Biological Engineering and Computing, 38,583-590

Troy A, Cadwallader A B, Fedorov Y, Tyner K, Tanaka K K,Olwin B B. 2012. Coordination of satellite cell activationand self-renewal by Par-complex-dependent asymmetricactivation of p38α/β MAPK. Cell Stem Cell, 11, 541-553

Vandenburgh H, Shansky J, Del Tatto M, Chromiak J. 1999.Organogenesis of skeletal muscle in tissue culture. Methodsin Molecular Medicine, 18, 217-225

Wang Y, Ouyang F. 1999a. Bead-to-bead transfer of Verocells in microcarrier culture. Cytotechnology, 31, 221-224

Wang Y, Ouyang F. 1999b. Recycle of Cytodex-3 in Vero cellculture. Bioprocess Engineering, 21, 207-210

Watanabe K, Ueno M, Kamiya D, Nishiyama A, MatsumuraM, Wataya T, Takahashi J B, Nishikawa S, Nishikawa SI, Muguruma K. 2007. A ROCK inhibitor permits survivalof dissociated human embryonic stem cells. NatureBiotechnology, 25, 681-686

Zagari F, Jordan M, Stettler M, Broly H, Wurm F M. 2013.Lactate metabolism shift in CHO cell culture: The role ofmitochondrial oxidative activity. New Biotechnology, 30,238-245

Zhang X, Stettler M, De Sanctis D, Perrone M, Parolini N,Discacciati M, De Jesus M, Hacker D, Quarteroni A, WurmF. 2010. Use of Orbital Shaken Disposable Bioreactors forMammalian Cell Cultures from the Milliliter-Scale to the1,000-Liter Scale. Disposable Bioreactors, Springer.

Zhao F, Pathi P, Grayson W, Xing Q, Locke B R, Ma T. 2005.Effects of oxygen transport on 3-D human mesenchymalstem cell metabolic activity in perfusion and static cultures:Experiments and mathematical model. BiotechnologyProgress, 21, 1269-1280

Zweigerdt R, Olmer R, Singh H, Haverich A, Martin U. 2011.Scalable expansion of human pluripotent stem cells insuspension culture. Nature Protocols, 6, 689-700
[1] GUO Hui-hui, WU Jian-fei, CHEN Cui-xia, WANG Hong-mei, ZHAO Yun-lei, ZHANG Chao-jun, JIA Yin-hua, LIU Fang, NING Tang-yuan, CHU Zhao-hui, ZENG Fan-chang. Identification and characterization of cell cultures with various embryogenic/regenerative potential in cotton based on morphological, cytochemical, and cytogenetical assessment[J]. >Journal of Integrative Agriculture, 2019, 18(1): 1-8.
No Suggested Reading articles found!