Please wait a minute...
Journal of Integrative Agriculture  2015, Vol. 14 Issue (4): 706-713    DOI: 10.1016/S2095-3119(14)60863-7
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Spectral sensitivity of the compound eyes of Anomala corpulenta motschulsky (Coleoptera: Scarabaeoidea)
 Jiang Yue-li, Guo Yu-yuan, Wu Yu-qing, Li Tong, Duan Yun, Miao Jin, Gong Zhong-jun, Huang Zhi-juan
1、College of Plant Protection, Northwest A&F University, Yangling 712100, P.R.China
2、Key Laboratory of Crop Pest Control of Henan Province/Institute of Plant Protection, Henan Academy of Agricultural Sciences,
Zhengzhou 450002, P.R.China
3、State Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of
Agricultural Sciences, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  The scarab beetle, Anomala corpulenta Motschulsky (Coleoptera: Scarabaeoidea), is a widespread and destructive pest in China. Vision is one of the most important means of acquiring information about the external environment. In order to contribute to the understanding of the perception of visual stimuli in this species, the light sensitivity and spectral responses of the scarab beetle, A. corpulenta, were measured by using an electroretinogram (ERG) technique. In total, 14 monochromatic light intensities, between 340 and 605 nm, were applied to the compound eyes of A. corpulenta under varying levels of adaptation to dark and light conditions. The results showed that all light stimuli induced an ERG response, with varied amplitudes. The spectral sensitivity curve of dark-adapted eyes showed one major peak (~400 nm; near-ultraviolet), a secondary peak (from 498 to 562 nm; yellow-green) and the third peakat 460 nm. By contrast, in light-adapted eyes, only a near-UV peak was observed. From these results, we conclude that the compound eye of A. corpulenta is likely to have at least three spectral types of photoreceptor. Significance of differences were also recorded in the responses of male and female compound eyes, as well as diurnally and nocturnally. The amplitude of ERG in response to white-light stimuli varied with the light intensity: The stronger the luminance, the higher the ERG value. This suggests that the compound eye of A. corpulenta adapts quickly to changing light conditions, enabling A. corpulenta to maintain nocturnal activities.

Abstract  The scarab beetle, Anomala corpulenta Motschulsky (Coleoptera: Scarabaeoidea), is a widespread and destructive pest in China. Vision is one of the most important means of acquiring information about the external environment. In order to contribute to the understanding of the perception of visual stimuli in this species, the light sensitivity and spectral responses of the scarab beetle, A. corpulenta, were measured by using an electroretinogram (ERG) technique. In total, 14 monochromatic light intensities, between 340 and 605 nm, were applied to the compound eyes of A. corpulenta under varying levels of adaptation to dark and light conditions. The results showed that all light stimuli induced an ERG response, with varied amplitudes. The spectral sensitivity curve of dark-adapted eyes showed one major peak (~400 nm; near-ultraviolet), a secondary peak (from 498 to 562 nm; yellow-green) and the third peakat 460 nm. By contrast, in light-adapted eyes, only a near-UV peak was observed. From these results, we conclude that the compound eye of A. corpulenta is likely to have at least three spectral types of photoreceptor. Significance of differences were also recorded in the responses of male and female compound eyes, as well as diurnally and nocturnally. The amplitude of ERG in response to white-light stimuli varied with the light intensity: The stronger the luminance, the higher the ERG value. This suggests that the compound eye of A. corpulenta adapts quickly to changing light conditions, enabling A. corpulenta to maintain nocturnal activities.
Keywords:  Anomala corpulenta       electroretinogram       insect vision       spectral sensitivity       light intensity  
Received: 24 March 2014   Accepted:
Fund: 

This work was supported by the China Agricultural Research Stem (CARS-03) and the Special Fund for Agro-Scientific Research in Public Interest, China (201003025).

Corresponding Authors:  GUO Yu-yuan,Tel: +86-10-62894786, E-mail: yuyuanguo@hotmail.com;WU Yu-qing, Tel: +86-371-65738134,E-mail: yuqingwu36@hotmail.com     E-mail:  yuyuanguo@hotmail.com;yuqingwu36@hotmail.com
About author:  JIANG Yue-li, Tel: +86-371-65738134, Mobile: 13838230695,E-mail: yueli006@126.com;

Cite this article: 

Jiang Yue-li, Guo Yu-yuan, Wu Yu-qing, Li Tong, Duan Yun, Miao Jin, Gong Zhong-jun, Huang Zhi-juan. 2015. Spectral sensitivity of the compound eyes of Anomala corpulenta motschulsky (Coleoptera: Scarabaeoidea). Journal of Integrative Agriculture, 14(4): 706-713.

Bernays E A, Chapman R F. 1994. Host-Plant Selection byPhytophagous Insects. Chapman & Hall, London, New York.

Blahó M, Egria A, Hegedüs R, Jósvai J, Tóth M, Kertész K, BiróLP, Kriska G, Horváth G. 2012. No evidence for behavioralresponses to circularly polarized light in four scarab beetlespecies with circularly polarizing exocuticle. Physiology &Behavior, 105, 1067-1075

Brady P, Cummings M. 2010. Differential response to circularlypolarized light by the jewel scarab beetle Chrysina gloriosa.The American Naturalist, 175, 614-620

Briscoe A D, Chittka L. 2001. The evolution of color vision ininsects. Annual Review of Entomology, 46, 471-510

Brown P E, Anderson M. 1996. Spectral sensitivity of thecompound eye of the cabbage root ?y, Delia radicum(Diptera: Anthomyiidae). Bulletin of EntomologicalResearch, 86, 337-342

Chapman R F, Bernays E A, Simpson S J. 1981. Attraction andrepulsion of the aphid, Cavariella aegopodii by plant odours.Journal of Chemical Ecology, 7, 881-888

Childers C C, Brecht J K. 1996. Colored sticky traps formonitoring Frankliniella bispinosa (Morgan) (Thysanoptera:Thripidae) during flowering cycles in citrus. Journal ofEconomic Entomology, 89, 1240-1249

Cornelius M L, Duan J J, Messing R H. 1999. Visual stimuliand the response of female oriental fruit flies (Diptera:Tephritidae) to fruit mimicking traps. Journal of EconomicEntomology, 92, 121-129

Defrize J, Lazzari C R, Warrant E J, Casas J. 2011. Spectralsensitivity of a colour changing spider. Journal of InsectPhysiology, 57, 508-513

Dixon A F G. 1985. Aphid Ecology. Blackie, Glasgow, London.Egelhaaf M, Kern R. 2002. Vision in flying insect. CurrentOpinion in Neurobiology, 12, 699-706

Eguchi E, Watanabe K, Hariyama T, Yamamoto K. 1982. Acomparison of electrophysiologically determined spectralresponses in 35 species of Lepidoptera. Journal of InsectPhysiology, 28, 675-682

Finch S, Collier R H. 2000. Host plant selection by in sects atheory based on appropriate/inappropriate landings by pestinsects of cruciferous plants. Entomologia Experimentaliset Applicata, 96, 91-102

Frisch K. 1949. Die Polarisation des Himmelslichtes alsorientierender Faktor bei denTänzen der Bienen.Experientia, 5, 142-148 (in German)

Grimm L G. 1993. Statistical Applications for the BehaviouralSciences. John Wiley and Sons, Chichester.

Harris M O, Miller J R. 1983. Color stimuli and ovipositionbehaviour of the onion fly Delia antiqua (Meigen) (Diptera:Anthomyiidae). Annals of the Entomological Society ofAmerica, 76, 766-771

Hasselmann E M. 1962. Über die relative spektraleEmpfindlichkeit von Käfer- und Schmetterlingsaugen beiverschiedenen Helligkeiten. Physiological and BiochemicalZoology, 69, 537-576 (in German)

Helen L G, Moray A. 1996. The spectral efficiency of the eye ofEphestia cautella (Walker) (Lepidoptera: Pyralidae). Journalof Stored Products Research, 32, 285-291

Horváth G, Varjú D. 2004. Polarized Light in Animal Vision.Springer-Verlag, Berlin Heidelberg, New York.

Jackowska M, Bao R, Liu Z, McDonald E C, Cook T A. 2007. Genomic and gene regulatory signatures of cryptozoicadaptation: Loss of blue sensitive photoreceptors throughexpansion of long wavelength-opsin expression in the redflour beetle Tribolium castaneum. Frontiers in Zoology,4, 24.

Kirchner S M, Doring T F, Saucke H. 2005. Evidence fortrichromacy in the green peach aphid, Myzus persicae(Sulz.) (Hemiptera: Aphididae). Journal of Insect Physiology,51, 1255-1260

Klingauf F A. 1987. Host plant ?nding and acceptance. In: MinksA K, Harrewijn P, eds., Aphids—Their Biology, NaturalEnemies and Control. Elsevier, Amsterdam. pp. 209-224

Kral K, Stelzl M. 1998. Daily visual sensitivity pattern in the greenlacewing Chrysoperla carnea (Neuroptera: Chrysopidae).European Journal of Entomology, 95, 327-333

Kugel M. 1977. The time course of the electroretinogram ofcompound eyes in insects and its dependence on specialrecording conditions. Journal of Experimental Biology, 71,1-6

Lall A B. 1981. Electroretinogram and the spectral sensitivityof the compound eyes in the ?re?y Photuris vermicular(Coleoptera: Lampyridae): A correspondence betweengreen sensitivity and species bioluminescence emission.Journal of Insect Physiology, 27, 461-468

Lall A B, Chapman R M, Trouth C O, Holloway J A. 1980a.Spectral mechanisms of the compound eye in the ?re?yPhotinus pyralis (Coleoptera: Lampyridae). Journal ofComparative Physiology, 135, 21-27

Lall A B, Lord E T, Trouth C O. 1982. Vision in the ?re?y PhoturisLucicrescens (Coleoptera: Lampyridae): spectral sensitivityand selective adaptation in the compound eye. Journal ofComparative Physiology, 147, 195-200

Lall A B, Seliger H H, Biggley W H, Lloyd A E.1980b. Ecologyof colors of ?re?y bioluminescence. Science, 210, 560-562

Lall A B, Ventura D S F, Etelvino J H B, Souza J M, Colepicolo-Neto P, Viviani V R. 2000. Spectral correspondence betweenvisual spectral sensitivity and bioluminescence emissionspectra in the click beetle Pyrophorus punctatissimus(Coleoptera: Elateridae). Journal of Insect Physiology, 46,1137-114

Lin J T, Wu C Y. 1992. A comparative study on the color vision offour coleopteran insects. Bulletin of the Institute of ZoologyAcademia Sinica, 31, 81-88 (in Chinese)

Matteson N, Terry I, Ascoli-Christensen A, Gilbert C. 1992.Spectral ef?ciency of the western ?ower thrips, Frankliniellaoccidentalis. Journal of Insect Physiology, 38, 453-459

Mellor H E, Bellingham J, Anderson M. 1997. Spectral ef?ciencyof the glasshouse white?y Trialeurodes vaporariorumand Encarsia formosa, its hymenopteran parasitoid.Entomologia Experimentalis et Applicata, 83, 11-20

Menzel R. 1979. Spectral sensitivity and colour vision ininvertebrates. In: Autrum H, ed., Invertebrate PhotoreceptorsHandbook of Sensory Physiology. Springer-Verlagk, Berlin.pp. 503-580

Michio I, Kaoru T. 2008. Spectral sensitivity and wing colorsof Narathura and Panchala species. Journal of InsectPhysiology, 54, 1511-1515

Moericke V. 1955. Über die Lebensgewohnheiten derge?ügelten Blattläuse (Aphidina) unter besondererBerücksichtigung des Verhaltens beim Landen. Zeitschriftfür Angewandte Entomologie, 37, 29-91 (in German)

Oba Y, Kainuma T. 2009. Diel changes in the expression of longwavelength-sensitive and ultraviolet-sensitive opsin genesin the Japanese firefly, Luciola cruciata. Gene, 436, 66-70

Powell G, Hardie J, Pickett J A. 1995. Responses of Myzuspersicae to the repellent polygodial in choice and nochoicevideo assays with young and mature leaf tissue.Entomologia Experimentalis et Applicata, 74, 91-94

Prokopy R J, Collier R H, Finch S.1983. Visual detection of hostplants by cabbage root flies. Annual Review of Entomology,28, 337-364

Qin J D. 1987. The evolution and reciprocity of insect and plant.In: Qin J D, eds., The Relation of Insect and Plant. SciencePress, Beijing. pp. 58-136 (in Chinese)

Scherer C, Kolb G. 1987. Behavioural experiments on thevisual processing of colour stimuli in Pieris brassicae L.(Lepidoptera). Journal of Comparative Physiology, 160,647-656

Sharma V, Crne M, Park J O, Srinivasarao M. 2009. Structuralorigin of circularly polarized iridescence in Jeweled beetles.Science, 325, 449-451

Steiner A, Rudiger P, Gemperlein R. 1987. Retinal receptortypes in Aglais urticae and Pieris brassicae (Lepidoptera),revealed by analysis of the electroretinogram obtainedwith fourier interferometric stimulation (FIS). Journal ofComparative Physiology (A), 160, 247-258

Walther J B. 1958. Changes induced in spectral sensitivityand form of retinal action potential of the cockroach eyeby selective adaptation. Journal of Insect Physiology, 2,142-151

Wehner R. 1976. Polarised-light navigation by insects. ScientificAmerican, 235, 106-115

Wehner R. 1981. Spatial vision in arthropods. In: Handbookof Sensory Physiology. vol. 7. Springer-Verlag, Berlin. pp.287-616

Wei G S, Zhang Q W, Zhou M Z. 2002. Characteristic responseof the compound eyes of Helicoverpa armigera to light. ActaEntomologica Sinica, 45, 323-328 (in Chinese)

Wernet M F, Labhart T, Baumann F, Mazzoni E O, PichaudF, Desplan C. 2003. Homothorax switches function ofDrosophila photoreceptors from color to polarized lightsensors. Cell, 115, 267-279

Wu J X. 2001. Agricultural Entomology (The North Version).China Agriculture Press, Beijing. pp. 49-50 (in Chinese)

Yan H X, Wei G S, Wu W G, Yan H Y, Zhang H Q, Li Z B. 2007.Spectral sensitivity of the compound eye in the lacewingChrysopa sinica Tejedar. Acta Entomologica Sinica, 50,1099-1104 (in Chinese)
[1] Iram SHAFIQ, Sajad HUSSAIN, Muhammad Ali RAZA, Nasir IQBAL, Muhammad Ahsan ASGHAR, Ali RAZA, FAN Yuan-fang, Maryam MUMTAZ, Muhammad SHOAIB, Muhammad ANSAR, Abdul MANAF, YANG Wen-yu, YANG Feng. Crop photosynthetic response to light quality and light intensity[J]. >Journal of Integrative Agriculture, 2021, 20(1): 4-23.
[2] YAO Xu-yang, LIU Xiao-ying, XU Zhi-gang, JIAO Xue-lei. Effects of light intensity on leaf microstructure and growth of rape seedlings cultivated under a combination of red and blue LEDs[J]. >Journal of Integrative Agriculture, 2017, 16(01): 97-105.
No Suggested Reading articles found!