Please wait a minute...
Journal of Integrative Agriculture  2011, Vol. 10 Issue (7): 1096-1105    DOI: 10.1016/S1671-2927(11)60099-0
Original Articles Advanced Online Publication | Current Issue | Archive | Adv Search |
Immunoproteomic Assay of Antigenic Surface Proteins in Streptococcus equi ssp. zooepidemicus
1Key Laboratory of Animal Disease Diagnostic and Immunology, Ministry of Agriculture/College of Veterinary Medicine, Nanjing Agricultural University
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Streptococcus equi ssp. zooepidemicus (S. zooepidemicus) is a zoonotic pathogen with worldwide distribution. Lackingsuitable vaccine and virulent maker is still bottleneck to control this infection. An immunoproteomic approach has beenused to screen the membrane-associated and cell wall-associated proteins of S. zooepidemicus isolate in China CY todiscover vaccine candidate antigens and therapeutic agents. Finally, 11 membrane-associated proteins, and 13 cell wallassociatedproteins were successfully identified. BLAST (www.sanger.ac.uk) results also indicated that nucleotidesequences of majority identified proteins shared high homology (>60%) with S. zooepidemicus, except for AC1-3, AC5,AC8, and AC13. Moreover, genes for 7 of the identified proteins were detected from CY; compared with ST171, 3 of them(AM1, AM8 and AC11) were only found in virulent strains (CY). All of the proteins identified in this study remain not tobe reported in S. zooepidemicus. Some of the proteins serve a vital role in the immune system and reproduction of hostspecies according to available data, while the functions of the rest were seldom researched.

Abstract  Streptococcus equi ssp. zooepidemicus (S. zooepidemicus) is a zoonotic pathogen with worldwide distribution. Lackingsuitable vaccine and virulent maker is still bottleneck to control this infection. An immunoproteomic approach has beenused to screen the membrane-associated and cell wall-associated proteins of S. zooepidemicus isolate in China CY todiscover vaccine candidate antigens and therapeutic agents. Finally, 11 membrane-associated proteins, and 13 cell wallassociatedproteins were successfully identified. BLAST (www.sanger.ac.uk) results also indicated that nucleotidesequences of majority identified proteins shared high homology (>60%) with S. zooepidemicus, except for AC1-3, AC5,AC8, and AC13. Moreover, genes for 7 of the identified proteins were detected from CY; compared with ST171, 3 of them(AM1, AM8 and AC11) were only found in virulent strains (CY). All of the proteins identified in this study remain not tobe reported in S. zooepidemicus. Some of the proteins serve a vital role in the immune system and reproduction of hostspecies according to available data, while the functions of the rest were seldom researched.
Received: 26 July 2010   Accepted:
Corresponding Authors:  Correspondence FAN Hong-jie, Professor, Tel: +86-25-843965328, Fax: +86-25-84396517, E-mail: fhj@njau.edu.cn     E-mail:  maoying_00@yahoo.com.cn
About author:  MAO Ying, MSc, E-mail: maoying_00@yahoo.com.cn

Cite this article: 

MAO Ying, FAN Hong-jie, ZHOU Yong-hua, LU Cheng-ping. 2011. Immunoproteomic Assay of Antigenic Surface Proteins in Streptococcus equi ssp. zooepidemicus. Journal of Integrative Agriculture, 10(7): 1096-1105.

[1]       Buchmeier N A, Heffron F. 1990. Induction of Salmonella stress proteins upon infection of macrophages. Science, 248, 730-732.
[2]       Bumann D, Holland P, Siejak F, Koesling J, Sabarth N, Lamer S,Zimny-Arndt U, Jungblut P R, Meyer T F. 2002. Acomparison of murine and human immunoproteomes ofHelicobacter pylori validates the preclinical murine infectionmodel for antigen screening. Infection and Immunity, 70, 6494-6498.
[3]       Causey R C, Weber J A, Emmans E E, Stephenson L A, HomolaA D, Knapp K R, Crowley I F, Wooley N A. 2006. Theequine immune response to Streptococcus equi subspecieszooepidemicus during uterine infection. The VeterinaryJournal, 172, 248-257.
[4]       Cole J N, Ramirez R D, Currie B J, Cordwell S J, Djordjevic S P,Walker M J. 2005. Surface analyses and immune reactivitiesof major cell wall-associated proteins of group astreptococcus. Infection and Immunity, 73, 3137-3146.
[5]       Donoghue P R, McManus C A, O’Donoghue N M, PenningtonS R, Dunn M J. 2006. CyDye immunoblotting for proteomics:co-detection of specific immunoreactive and total proteinprofiles. Proteomics, 24, 6400-6404.
[6]       Esgleas M, Li Y, Hancock M A, Harel J, Dubreuil J D, GottschalkM. 2008. Isolation and characterization of alpha-enolase, anovel fibronectin-binding protein from Streptococcus suis.Microbiology, 154, 2668-2679.
[7]       Evarsson A A, Brazhnikov E, Garber M, Zheltonosova J,Chirgadze Y, SalKaradaghi S, Svensson L A, Liljas A. 1994.Three-dimensional structure of the ribosomal translocase:elongation factor G from Thermus thermophilus. EMBOJournal, 13, 3669-3677.
[8]       Feng Z G, Hu J S. 1977. Outbreak of swine Streptococcosis inSichan Province and identification of pathogen. AnimalHusbandry and Vertinary Medicine Letters, 2, 7-12.
[9]       (inChinese)Gahan C G M, O’Mahony J, Hill C. 2001. Characterization ofthe groESL operon in listeria monocytogenes: Utilization oftwo reporter systems (gfp and hly) for evaluating in vivoexpression. Infection and Immunity, 69, 3924-3932.
[10]    Ge J, Catt D M, Gregory R L. 2004. Streptococcus mutanssurface alpha-enolase binds salivary mucin MG2 and humanplasminogen. Infection and Immunity, 72, 6748-6752.
[11]    Jing H B, Yuan J, Wang J, Yuan Y, Zhu L, Liu X K, Zheng Y L,Wei K H, Zhang X M, Geng H R, et al. 2008. Proteomeanalysis of Streptococcus suis serotype 2. Proteomics, 8,333-349.
[12]    Jonsson H, Lindmark H, Guss B. 1995. A protein G-related cellsurface protein in Streptococcus zooepidemicus. Infection andImmunity, 63, 2968-2975.
[13]    Kannan N, Chander P, Ghosh P, Vishveshwara S, Chatterji D.2001. Stabilizing interactions in the dimer interface of alphasubunitin Escherichia coli RNA polymerase: a graph spectraland point mutation study. Protein Science, 10, 46-54.
[14]    Laemmli U K. 1970. Cleavage of structural proteins during theassembly of the head of bacteriophage T4. Nature, 227, 680-685.
[15]    Lestrate P, Dricot A, Delrue R M, Lambert C, Martinelli V,Bolle D, Letesson J, Tibor A. 2003. Attenuated signaturetaggedmutagenesis mutants of Brucella melitensis identifiedduring the acute phase of infection in mice. Infection andImmunity, 71, 7053-7060.
[16]    Lindmark H, Jacobsson K, Frykberg L, Guss B. 1996. Fibronectinbindingprotein of Streptococcus equi subsp. zooepidemicus.Infection and Immunity, 64, 3993-3999.
[17]    Maass M, Dalhoff K. 1994. Comparison of sample preparationmethods for detection of Chlamydia pneumoniae inbronchoalveolar lavage fluid by PCR. Journal of ClinicalMicrobiology, 32, 2616-2619.
[18]    Maria S C, Luca B, Maurizio C, Roberto R, Barbara M, VitalianoP, Giulio R. 1999. Identification of immunoreactive proteinsof Chlamydia trachomatis by Western blot analysis of a twodimensionalelectrophoresis map with patient sera.Electrophoresis, 20, 2269-2279.Pancholi V. 2001. Multifunctional alpha-enolase: its role indiseases. cellular and molecular life sciences, 58, 902-920.
[19]    Pancholi V, Fischetti V A. 1998. Alpha-enolase, a novel strongplasmin(ogen) binding protein on the surface of pathogenicstreptococci. Journal of Biological Chemistry, 273, 14503-14515.
[20]    Rodriguez-Ortega M J, Norais N, Bensi G, Liberatori S, Capo S,Mora M, Scarselli M, Doro F, Ferrari G, Garaguso I, et al.2006. Characterization and identification of vaccine candidateproteins through analysis of the group A Streptococcussurface proteome. Nature Biotechnology, 24, 191-197.
[21]    Schäfer K, Magnusson U, Scheffel F, Schiefner A, Sandgren M OJ, Diederichs K, Welte W, Hülsmann A, Schneider E,Mowbray S L. 2004. X-ray structures of the maltosemaltodextrin-binding protein of the thermoacidophilicbacterium Alicyclobacillus acidocaldarius provide insight intoacid stability of proteins. Journal of Molecular Biology, 335,261-274.
[22]    Schomburg D, Schomburg I, Chang A. 2007. FMNadenylyltransferase. In: Schomburg D, Schomburg I, eds.,Hand Book of Enzymes. 2nd ed. vol. 38. Springer, Heidelberg.pp. 63-70.
[23]    Segal R, Ron E Z. 1996. Regulation and organization of the groEand dnaK operons in Eubacteria. FEMS Microbiology Letters,138, 1-10.
[24]    Shelburne S A III, Fang H, Okorafor N, Sumby P, Sitkiewicz I,Keith D, Patel P, Austin C, Graviss E A, Musser J M, et al.2007. MalE of group A Streptococcus participates in the rapid transport of maltotriose and longer maltodextrins.Journal of Bacteriology, 189, 2610-2617.
[25]    Shelburne S A III, Sumby P, Sitkiewicz I, Okorafor N, GranvilleC, Patel P, Voyich J, Hull R, DeLeo F R, Musser J M. 2006.Maltodextrin utilization plays a key role in the ability ofgroup A Streptococcus to colonize the oropharynx. Infectionand Immunity, 74, 4605-4614.
[26]    Timoney J F, Walker J, Zhou M, Ding J. 1995. Cloning andsequence analysis of a protective M-like protein gene fromStreptococcus equi subsp. zooepidemicus. Infection andImmunity, 63, 1440-1445.
[27]    Tsugawa H, Ito H, Ohshima M, Okawa Y. 2007. Cell adherencepromotedactivity of Plesiomonas shigelloides groEL. Journalof Medical Microbiology, 56, 23-29.
[28]    Wang J, Ying T, Wang H, Shi Z X, Li M Z, He K, Feng E L, WangJ, Yuan J, Li T, et al. 2005. 2-D reference map of Bacillusanthracis vaccine strain A16R proteins. Proteomics, 5, 4488-4495.
[29]    Wang Y, Yang L, Xu H, Li Q, Ma Z, Chu C. 2005. Differentialproteomic analysis of proteins in wheat spikes induced byFusarium graminearum. Proteomics, 5, 4496-4503.
[30]    Winterhoff N, Goethe R, Gruening P, Rohde M, Kalisz H, SmithH E, Valentin-Weigand P. 2002. Identification andcharacterization of two temperature-induced surfaceassociatedproteins of Streptococcus suis with high homologiesto members of the arginine deiminase system of Streptococcuspyogenes. Journal of Bacteriology, 184, 6768-6776.
[31]    Wistedt A C, Ringdahl U, Muller-Esterl W, Sjobring U. 1995.Identification of a plasminogen-binding motif in PAM, abacterial surface protein. Molecular Microbiology, 18, 569-578.
[32]    World Health Organization. 2005. Outbreak associated withStreptococcus suis in pigs, China. Weekly EpidemiologicalRecord, 80, 269-270.
[33]    Zhang W, Lu C P. 2007a. Immunoproteomics of extracellularproteins of Chinese virulent strains of Streptococcus suistype 2. Proteomics, 24, 4468-4476.
[34]   Zhang W, Lu C P. 2007b. Immunoproteomic assay of membraneassociatedproteins of Streptococcus suis type 2 China vaccinestrain HA9801. Zoonoses Public Health, 5, 253-259.
No related articles found!
No Suggested Reading articles found!