Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (5): 1043-1054.doi: 10.3864/j.issn.0578-1752.2021.05.015

• HORTICULTURE • Previous Articles     Next Articles

Metabolic Analysis of Aroma Components in Two Interspecific Hybrids from the Cross of F.ananassa Duch. and Fragaria nilgerrensis Schlecht.

AiHua WANG(),HongYe MA,RongFei LI,ShiPin YANG,Rong QIAO,PeiLin ZHONG()   

  1. Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang 550006
  • Received:2020-05-27 Accepted:2020-10-21 Online:2021-03-01 Published:2021-03-09
  • Contact: PeiLin ZHONG E-mail:118wah@163.com;1105197620@qq.com

Abstract:

【Objective】 Two interspecific hybrids PF (with honey peach aroma) and NF (without peach aroma) were obtained from the cross of Fragaria ananassa Duch. and F. nilgerrensis Schlecht. Fruit aroma compounds in PF and NF were compared to clarify the composition and content of honey peach aroma, aiming to provide a theoretical basis for research on strawberry aroma and utilization of wild strawberry resources. 【Method】 Matured fruits of PF and NF were harvested from greenhouse in February 18, 2018, respectively. The fruit traits comparison between two interspecific hybrids PF and NF were measured as Descriptors and Data Standard for Strawberry (Fragaria spp.). Fruit aroma compounds were extracted by using head solid-phase microextraction (HS-SPME), and then, detected by gas chromatograph tandem mass spectrometer technology (GC-MS). The mass spectra of the detected compounds were matched with NIST Library and also subjected to artificial qualitative analysis based on literatures. Multivariate statistics including principal component analysis (PCA) and supervised partial least squares-discriminant analysis (PLS-DA) were conducted to screen significantly differential metabolites. Variable Importance in the Projection (VIP) >1.0, log2FC >1.0 or log2FC<-1.0, and P value<0.05, indicates an increase and decrease by over 2-fold, respectively, in a comparison between PF and NF. The relative content of each significantly different metabolite (expressed as percentage) was calculated as the ratio between each peak area and the sum of all significantly different metabolite peak areas, multiplied by 100 [Relative Content. = (Areapeak/ΣAreaspeak) ×100]. Chemical Abstracts Service Registry Number (CAS#) was retrieved from the PubChem database (https://pubchem.ncbi.nlm.nih.gov). 【Result】 Fruits traits of PF was consistent with those of NF, except honey peach aroma. The fruits of both PF and NF were almost the same size, with red fruit color, small fruit cavity, soft texture and sweet and sour taste. Totally, 383 kinds of aroma compound were identified from the test samples by GC-MS, including 141esters, 41 alcohols, 40 ketones, 36 alkanes, 22 aldehydes, 17 olefins, 17 acids, 13 lactones, 10 naphthenes, 7 ethers, 6 furans and 16 other compounds. The main components were esters, kinds of which accounting for 36.81% of the total metabolites, followed by alcohol, ketone and alkane, accounted for 10.70%, 10.44% and 9.40%, respectively. A total of 67 significantly different metabolites were screened from the 383 detected metabolites, 58 of which were up-regulated and 9 were down-regulated. PF significantly up-regulated lactones. The top three up-regulated lactones were 2H-Pyran-2-one, tetrahydro-6-(2-pentenyl)-, (Z)-, 2H-Pyran-2-one, 6-hexyltetrahydro-, and 2H-Pyran-2-one, tetrahydro-6-pentyl-. NF down-regulated esters significantly. The top three down-regulated esters were 2-propenoic acid, 3-phenyl-, ethyl ester, sulfurous acid, 2-ethylhexyl isohexyl ester and butanoic acid, 3-hydroxy-, ethyl ester. The relative content of esters in PF (37.69%) was significantly lower than that of NF (57.20%), conversely, lactones in PF (20.91%) significantly higher than that of NF (6.12%). The relative content of ketones in PF (15.30%) was slightly higher than that of NF (9.12%). The relative content of alcohols, aldehydes, acids, olefins and other metabolites were almost equally present in PF and NF. The ester with the highest relative content in NF was butanoic acid, ethyl ester (17.92%), and the lactone with the highest relative content in PF was 2H-Pyran-2-one, tetrahydro-6-pentyl-(12.53%). The ketone with the highest relative content in PF was the same as NF, both were 2-heptanone. 【Conclusion】 Esters, such as 2-propenoic acid, 3-phenyl-, ethyl ester, butanoic acid, ethyl ester and butanoic acid, 3-hydroxy-, ethyl ester, might be the key aroma components of NF. Lactones, such as 2H-Pyran-2-one, tetrahydro-6-(2-pentenyl)-, (Z)-, 2H-Pyran-2-one, 6-hexyltetrahydro-, 2H-Pyran-2-one, and tetrahydro-6-pentyl-, might be the key aroma components to form the honey peach aroma in PF.

Key words: Fragaria nilgerrensis, interspecific hybrids, aroma components, significantly different metabolites

Table 1

Comparison of fruit traits between two interspecific hybrids PF and NF"

株系
Lines
蜜桃香气
Honey peach aroma
平均单果重
Mean fruit weight (g)
果面颜色
Color of fruit
果肉颜色
Flesh color
果实硬度
Fruit firmness (kg?cm-2)
髓心空洞
Fruit cavity size
果肉质地
Fruit texture
风味
Flavor
PF
Much
19.26±0.81
Red

White
0.96±0.08
Small

Mealy
酸甜适中
Sweet-Sour
NF
None
20.74±1.02
Red

White
1.03±0.19
Small

Mealy
酸甜适中
Sweet-Sour

Fig. 1

Fruits of two interspecific hybrids PF (Left) and NF (Right)"

Fig. 2

PCA score scatter plots of total samples"

Fig. 3

PLS-DA score scatter plots of comparison group R2Y: The interpretation rate of the PLS-DA model; Q2Y: The predictive ability of the PLS-DA model"

Fig. 4

Validation plots of PLS-DA with 200 permutation Cor: The correlation between the randomly grouped Y and the original group Y; Value: The score of R2 and Q2"

Fig. 5

Analysis on category of the total metabolites"

Fig. 6

KEGG pathway annotation"

Fig. 7

Lipid maps annotation"

Fig. 8

Analysis on category of the significantly different metabolites"

Table 2

Analysis of significantly different metabolites in the fruits of PF and NF by GC-MS"

序号
No.
化合物名称
Compound name
保留时间
Retention time (min)
CAS号
CAS #
相对含量
Relative content (%)
log2FC P-value
VIP
PF NF
酯类 Esters
1 3,7,11-三甲基-1,6,10-十二烷三烯-3-醇乙酸酯
Nerolidyl acetate
31.46
2306-78-7
0.11 0.08 3.63 1.52E-02 1.54
2 己酸癸酯 Decyl hexanoate 30.63 52363-43-6 2.16 0.47 3.57 7.62 E-03 2.84
3 异戊酸癸酯 Isovaleric acid, decyl ester 27.27 72928-48-4 1.16 0.26 3.54 1.17 E-03 2.52
4 乙酸月桂酯 Lauryl acetate 27.99 112-66-3 0.13 0.11 3.21 7.28 E-03 1.54
5 乙酸癸酯 Decyl acetate 23.52 112-17-4 2.21 0.59 3.18 1.94E-03 2.63
6 1-Octen-1-ol, acetate 20.06 2761-31-1 0.03 0.03 3.11 0.03 1.31
7 癸基辛酸酯 Decyl octanoate 34.34 2306-89-0 0.01 0.01 3.01 0.02 1.39
8 环丙烷羧酸癸酯
Cyclopropanecarboxylic acid,decyl ester
21.09 - 0.19 0.13 2.91 0.03 1.35
9 4-Hexen-1-ol, acetate 14.24 72237-36-6 0.21 0.16 2.86 2.01E-03 1.55
10 (Z)-7-十二碳烯-1-醇乙酸酯
cis-7-Dodecen-1-yl acetate
28.62 14959-86-5 0.06 0.07 2.74 0.02 1.21
11 (Z)-Dec-4-enyl isobutyl carbonate 34.71 - 0.43 0.22 2.59 1.94E-03 1.83
12 (Z)-Dec-4-en-1-yl 2-methylbutanoate 27.61 - 2.35 1.22 2.57 3.45E-03 1.80
13 2-十二烯基乙酸酯trans-2-Dodecen-1-ol, acetate 23.98 38363-23-4 9.59 2.90 2.49 9.12E-03 2.73
14 2-Butenoic acid, 2-methyl-, 2-methylpropyl ester 26.78 66917-61-1 0.06 0.08 2.29 0.01 1.15
15 Cyclobutanecarboxylic acid, 4-methylpentyl ester 3.27 - 0.03 0.04 2.27 4.08E-04 1.30
序号
No.
化合物名称
Compound name
保留时间
Retention time (min)
CAS号
CAS #
相对含量
Relative content (%)
log2FC P-value
VIP
PF NF
16 (Z)-己-2-烯基乙酸酯 2-Hexen-1-ol, acetate, (Z)- 14.73 56922-75-9 0.41 0.55 2.21 7.21 E-04 1.39
17 乙酸正壬酯 Acetic acid, nonyl ester 21.13 143-13-5 0.05 0.08 2.16 0.01 1.05
18 3-乙酰氧基-3-羟基-2-甲基丙酸甲酯3-Acetoxy-3-hydroxy-2-methylpropionic acid, methyl ester 25.99 - 0.42 0.60 2.05 5.61E-06 1.24
19 癸酸甲酯 Decanoic acid, methyl ester 21.52 110-42-9 0.47 0.78 2.02 4.09E-03 1.06
20 2-四氢糠酸甲酯Methyl2-tetrahydrofuroate 34.62 37443-42-8 0.08 0.12 2.01 1.70 E-03 1.11
21 乙酸丁香酚酯 Acetyl eugenol 33.38 93-28-7 0.04 0.06 1.98 2.48 E-04 1.15
22 1,4-丁二醇二乙酸酯 1,4-Butanediol, diacetate 25.64 628-67-1 0.57 0.28 1.96 0.02 2.00
23 Fumaric acid, di(dec-4-enyl) ester 30.99 - 7.07 4.77 1.87 0.04 2.39
24 醋酸辛酯 Acetic acid, octyl ester 18.56 112-14-1 8.75 5.61 1.39 0.04 2.29
25 (S)-3-羟基丁酸甲酯
Butanoic acid, 3-hydroxy-, methyl ester, (S)-
18.65 53562-86-0 0.48 6.79 -2.15 0.03 1.09
26 氨茴酸甲酯 Methyl anthranilate 34.65 134-20-3 3.18E-03 0.06 -2.24 0.01 1.13
27 2-甲氧基苯甲酸甲酯
Benzoic acid, 2-methoxy-, methyl ester
31.53 606-45-1 0.02 0.46 -2.54 6.47E-03 1.27
28 亚硫酸,环己基甲基十二烷基酯
Sulfurous acid, cyclohexylmethyl dodecyl ester
30.71 - 0.04 0.57 -2.79 0.04 1.18
29 丁酸乙酯 Butanoic acid, ethyl ester 6.07 105-54-4 0.47 17.92 -3.33 0.03 2.28
30 3-羟基丁酸乙酯
Butanoic acid, 3-hydroxy-, ethyl ester
19.61 5405-41-4 0.08 9.93 -4.14 0.02 2.53
31 亚硫酸,2-乙基己基异己酯
Sulfurous acid, 2-ethylhexyl isohexyl ester
25.35 - 2.87E-03 0.72 -6.65 0.03 2.75
32 肉桂酸乙酯
2-Propenoic acid, 3-phenyl-, ethyl ester
32.72 103-36-6 7.23E-03 1.53 -7.19 0.03 2.48
合计 Sum 37.69 57.20
内酯类 Lactones
33 (Z)-7-癸烯-5-酸
2H-Pyran-2-one, tetrahydro-6-(2-pentenyl)-, (Z)-
35.01 25524-95-2 2.38 0.17 5.60 2.38E-05 3.55
34 丁位十一内酯
2H-Pyran-2-one, 6-hexyltetrahydro-
37.94 710-04-3 0.55 0.08 5.33 2.61E-05 2.97
35 δ-癸内酯2H-Pyran-2-one, tetrahydro-6-pentyl- 33.89 705-86-2 12.53 1.01 5.30 1.33 E-04 3.44
36 2H-Pyran-2-one, 5,6-dihydro-6-propyl- 34.59 16400-69-4 0.05 0.07 2.53 2.95 E-03 1.33
37 丁位己内酯2H-Pyran-2-one,tetrahydro-6-methyl- 25.83 823-22-3 2.74 1.71 2.30 3.35 E-03 1.61
38 丁位辛内酯
2H-Pyran-2-one, tetrahydro-6-propyl-
29.55 698-76-0 2.08 2.45 1.52 0.02 1.10
39 丙位壬内酯 2(3H)-Furanone, dihydro-5-pentyl- 30.75 104-61-0 0.58 0.63 1.31 0.04 1.20
合计 Sum 20.91 6.12
酮类 Ketones
40 β-紫罗兰酮
3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-
29.03 79-77-6 0.08 0.11 2.04 8.57 E-04 1.14
41 2-庚酮 2-Heptanone 10.25 110-43-0 14.09 7.74 1.94 0.02 2.47
42 5-庚烯-2-酮 5-Hepten-2-one 12.32 6714-00-7 0.64 0.84 1.93 1.67E-04 1.13
序号
No.
化合物名称
Compound name
保留时间
Retention time (min)
CAS号
CAS #
相对含量
Relative content (%)
log2FC P-value
VIP
PF NF
43 3-壬烯-2-酮 3-Nonen-2-one 19.41 14309-57-0 0.49 0.43 1.62 0.02 1.77
合计 Sum 15.30 9.12
醇类 Alcohols
44 1-癸醇 1-Decanol 25.45 112-30-1 0.89 0.25 4.50 2.23E-05 2.60
45 3-环戊基-1-丙醇3-Cyclopentyl-1-propanol 34.09 767-05-5 0.04 0.04 3.07 0.02 1.24
46 反式-3-己烯-1-醇 3-Hexen-1-ol 16.19 544-12-7 0.31 0.38 2.82 1.04E-03 2.14
47 (Z)-4-癸烯-1-醇 (Z)-4-Decen-1-ol 26.16 57074-37-0 1.74 0.66 2.39 8.64E-03 2.18
48 苯甲醇 Benzyl alcohol 27.74 100-51-6 0.97 1.32 1.66 0.01 1.06
49 辛醇 1-Octanol 20.71 111-87-5 5.91 4.86 1.52 0.02 1.37
合计 Sum 9.86 7.51
醛类 Aldehydes
50 苯乙醛 Benzeneacetaldehyde 22.43 122-78-1 6.74 9.22 2.20 9.46E-04 1.45
51 2-甲基丁醛 Butanal, 2-methyl- 3.36 96-17-3 0.21 0.42 1.77 0.03 1.06
52 庚醛 Heptanal 10.31 111-71-7 0.93 1.50 1.73 3.39E-04 1.05
53 糠醛 Furfural 18.08 98-01-1 0.44 0.63 1.58 0.01 1.01
合计 Sum 8.32 11.77
酸类 Acids
54 辛酸 Octanoic acid 31.90 124-07-2 5.24 4.98 2.47 7.39E-03 1.37
55 异辛酸 Hexanoic acid, 2-ethyl- 30.08 149-57-5 0.31 0.46 2.02 5.31E-03 1.09
合计 Sum 5.55 5.44
烯烃类 Olefins
56 5-亚乙基-1-甲基-环庚烯
Cycloheptene, 5-ethylidene-1-methyl-
25.41 15402-94-5 0.54 0.31 3.51 2.00E-04 1.97
57 4, 6(Z), 8(E)-大柱三烯
Megastigma-4, 6(Z), 8(E)-triene
21.15 55497-53-5 0.13 0.16 2.05 5.10 E-04 1.17
58 7(E),9,13-大柱三烯 egastigma-7(E),9,13-triene 17.82 - 0.31 0.40 1.98 9.91E-04 1.12
59 Z-5-十九碳烯 Z-5-Nonadecene 24.91 - 0.08 0.11 1.92 0.02 1.32
合计 Sum 1.06 0.98
其他 Others
60 N-甲基-叔丁基胺N-tert-Butylmethylamine 2.36 14610-37-8 0.05 0.03 3.01 3.47E-05 1.76
61 1,5-二甲基-6-氧杂双环[3.1.0]己烷
1,5-Dimethyl-6-oxa-bicyclo[3.1.0]hexane
4.90 82461-31-2 0.10 0.07 2.97 1.25E-05 1.75
62 4-烯丙基苯酚 Phenol, 4-(2-propenyl)- 36.42 501-92-8 0.70 0.79 2.36 5.54E-04 1.34
63 顺式-1-乙基-2-甲基环戊烷
Cyclopentane, 1-ethyl-2-methyl-, cis-
29.71 930-89-2 0.04 0.04 2.08 0.03 1.04
64 苯 Benzene 3.81 71-43-2 0.13 0.15 2.05 1.47E-03 1.14
65 二甲基硫醚 Dimethyl sulfide 2.04 75-18-3 0.15 0.27 1.75 5.32E-03 1.23
66 2-乙基呋喃 Furan, 2-ethyl- 4.08 3208-16-0 0.12 0.33 1.48 0.01 1.13
67 L-鼠李糖 Rhamnose 22.38 3615-41-6 0.01 0.21 -2.60 0.03 1.11
合计 Sum 1.30 1.89
[1] URRUTIA M, RAMBLA J L, ALEXIOU K G, GRANELL A, MONFORT A. Genetic analysis of the wild strawberry (Fragaria vesca) volatile composition. Plant Physiology and Biochemistry, 2017,121:99-117.
pmid: 29100102
[2] NEGRI A S, ALLEGRA D, SIMONI L, RUSCONI F, TONELLI C, ESPEN L, GALBIATI M. Comparative analysis of fruit aroma patterns in the domesticated wild strawberries “Profumata di Tortona” (F. moschata) and “Regina delle Valli” (F. vesca). Frontiers in Plant Science, 2015,6:56.
pmid: 25717332
[3] 王玲, 尹克林. ‘达赛莱克特’草莓果实发育成熟过程中香气物质的变化及其特征成分的确定. 果树学报, 2018,35(4):433-441.
WANG L, YIN K L. Changes in aroma of ‘Darselect’ strawberry during development and characterization of the key aroma components. Journal of Fruit Science, 2018,35(4):433-441. (in Chinese)
[4] DONG J, ZHANG Y T, TANG X W, JIN W M, HAN Z H. Differences in volatile ester composition between Fragaria × ananassa and F. vesca and implications for strawberry aroma patterns. Scientia Horticulturae, 2013,150:47-53.
doi: 10.1016/j.scienta.2012.11.001
[5] STAUDT G, DRAWERT F, TRESSL R. Gas chromatographic-mass spectrometric differentiation of aroma compounds from strawberry varieties. II. Fragaria nilgerrensis. Zeitschrift Fuer Pflanzenzuechtung, 1975,75:36-42.
[6] ZHAO M Z, WANG J, WANG Z W, QIAN Y M, WU W M. GC-MS analysis of volatile components in Chinese wild strawberry (F. nilgerrensis Schlecht.). Acta Horticulturae, 2014,1049:467-469.
[7] PRAT L, ESPINOZA M I, AGOSIN E, SILVA H. Identification of volatile compounds associated with the aroma of white strawberries (Fragaria chiloensis). Journal of the Science of Food and Agriculture, 2014,94(4):752-759.
pmid: 24115051
[8] 兰欣, 汪东风, 张莉, 赵纪合. HS-SPME法结合GC-MS分析崂山绿茶的香气成分. 食品与机械, 2012,28(5):96-101.
LAN X, WANG D F, ZHANG L, ZHAO J H. Aromaic components analysis of green tea in Lao Mountain by HS-SPME and GC-MS. Food and Machinery, 2012,28(5):96-101. (in Chinese)
[9] KHALIL M N A, FEKRY M I, FARAG M A. Metabolome based volatiles profiling in 13 date palm fruit varieties from Egypt via SPME GC-MS and chemometrics. Food Chemistry, 2017,217:171-181.
doi: 10.1016/j.foodchem.2016.08.089 pmid: 27664623
[10] 张运涛, 王桂霞, 董静, 钟传飞. 章姬和甜查理草莓果实发育过程中挥发物的变化. 果树学报, 2009,26(4):511-515.
ZHANG Y T, WANG G X, DONG J, ZHONG C F. Changes of volatiles in developing strawberry fruit of Akihime and Sweet Charlie cultivars. Journal of Fruit Science, 2009,26(4):511-515. (in Chinese)
[11] 曾祥国, 韩永超, 向发云, 杨艳芳, 陈丰滢, 顾玉成. 不同品种草莓果实挥发性物质的GC-MS分析. 亚热带植物科学, 2015,44(1):8-12.
ZENG X G, HAN Y C, XIANG F Y, YANG Y F, CHEN F Y, GU Y C. Analysis of GC-MS on fruit aroma components of different strawberry cultivars. Subtropical Plant Science, 2015,44(1):8-12. (in Chinese)
[12] JETTI R R, YANG E, KURNIANTA A, FINN C, QIAN M C. Quantification of selected aroma-active compounds in strawberries by headspace solid-phase microextraction gas chromatography and correlation with sensory descriptive analysis. Journal of Food Science, 2007,72(7):S487-S496.
pmid: 17995662
[13] SONG C K, HONG X T, ZHAO S. LIU J Y, SCHULENBURG , HUANG F C, FRANZ-OBERDORF K, SCHWAB W. Glucosylation of 4-Hydroxy-2,5-Dimethyl-3(2H)-Furanone, the key strawberry flavor compound in strawberry fruit. Plant Physiology, 2016,171(1):139-151.
doi: 10.1104/pp.16.00226 pmid: 26993618
[14] LU H Y, BAN Z J, WANG K D, LI D, LI D D, POVERENOV E, LI L, LUO Z S. Aroma volatiles, sensory and chemical attributes of strawberry (Fragaria × ananassa Duch.) achenes and receptacle. International Journal of Food Science & Technology, 2017,52(12):2614-2622.
[15] AHARONI A, GIRI A P, VERSTAPPEN F W A, BERTEA C M, SEVENIER R, SUN Z K, JNONGMA M A, SCHWAB W, BOUWMEESTERA H J. Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. The Plant Cell, 2004,16(11):3110-3131.
doi: 10.1105/tpc.104.023895 pmid: 15522848
[16] SCHWIETERMAN, M L, COLQUHOUN T A, JAWORSKI E A, BARTOSHUK L M, GILBERT J L, TIEMAN D M, ODABASIA Z, MOSKOWITZ H R, FOLTA K M, KLEE H J, SIMS C A, WHITAKER V M, CLARK D G. Strawberry flavor: Diverse chemical compositions, a seasonal influence, and effects on sensory perception. PLoS ONE, 2014,9(2):e88446.
doi: 10.1371/journal.pone.0088446 pmid: 24523895
[17] ZELIOU K, PAPASOTIROPOULOS V, MANOUSSOPOULOS Y, LAMARI F N. Physical and chemical quality characteristics and antioxidant properties of strawberry cultivars (Fragaria × ananassa Duch.) in Greece: Assessment of their sensory impact. Society of Chemical Industry, 2018,98(11):4065-4073.
[18] ZHANG J X, LEI Y Y, WANG B T, LI S, YU S, WANG Y, LI H, LIU Y X, MA Y, DAI H Y, WANG J H, ZHANG Z H. The high-quality genome of diploid strawberry (Fragaria nilgerrensis) provides new insights into anthocyanin accumulation. Plant Biotechnology Journal, 2020,18(9):1908-1924.
pmid: 32003918
[19] 马鸿翔, 陈佩度. 黄毛草莓与凤梨草莓种间杂种的获得及其细胞遗传学分析. 中国农业科学, 2004,37(12):1966-1970.
MA H X, CHEN P D. Production and cytogenetics of interspecific hybrids from the cross of Fragaria nilgerrensis Schlecht and F. ananassa Duch. Scientia Agricultura Sinica, 2004,37(12):1966-1970. (in Chinese)
[20] NOGUCHI Y, MORISHITA M, MURO T, KOJIMA A, SAKATA Y, YAMADA T, SUGIYAMA K. ‘Tokun’: A new aromatic decaploid interspecific hybrid strawberry. Bulletin of the National Institute of Vegetable and Tea Science, 2011,42(2):122-128. (in Japanese with English abstract)
[21] NOGUCHI Y, MURO T, MORISHITA M. The possibility of using decaploid interspecific hybrids (Fragaria × ananassa × F. nilgerrensis) as a parent for a new strawberry. Acta Horticulturae, 2009(842):447-450.
[22] 赵密珍. 草莓种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
ZHAO M Z. Descriptors and Data Standard for Strawberry (Fragaria spp.). Beijing: China Agriculture Press, 2006. (in Chinese)
[23] 贺书珍, 吴刚, 张彦军, 徐飞, 朱科学, 谭乐和. 不同基因型菠萝蜜种质资源挥发性香气成分分析. 热带作物学报, 2019,40(7):1304-1311.
HE S Z, WU G, ZHANG Y J, XU F, ZHU K X, TAN L H. Analysis of volatile aroma compounds in jackfruit (Artocarpus heterophyllus) of different genotypes. Chinese Journal of Tropical Crops, 2019,40(7):1304-1311. (in Chinese)
[24] 王娟, 孙瑞, 王桂霞, 常琳琳, 孙健, 钟传飞, 董静, 张运涛, Detlef. ULRICH. 8个草莓品种(系)果实特征香气成分比较分析. 果树学报, 2018,35(8):967-976.
WANG J, SUN R, WANG G X, CHANG L L, SUN J, ZHONG C F, DONG J, ZHANG Y T, ULRICH D. A comparative analysis on fruit characteristic aroma compounds in eight strawberry varieties (strains). Journal of Fruit Science, 2018,35(8):967-976. (in Chinese)
[25] 董静, 钟传飞, 王桂霞, 常琳琳, 孙健, 孙瑞, 张宏力, 李睿, 隗永青, 郑书旗, 张运涛. 日中性草莓不同季节果实挥发性成分差异. 中国农业科学, 2019,52(13):2309-2327.
doi: 10.3864/j.issn.0578-1752.2019.13.010
DONG J, ZHONG C F, WANG G X, CHANG L L, SUN J, SUN R, ZHANG H L, LI R, WEI Y Q, ZHENG S Q, ZHANG Y T. Comparative study on fruit volatiles of different day-neutral strawberry cultivars in autumn and winter. Scientia Agricultura Sinica, 2019,52(13):2309-2327. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.13.010
[26] ULRICH D, KOMES D, OLBRICHT K. HOBERG E. Diversity of aroma patterns in wild and cultivated Fragaria accessions. Genetic Resources and Crop Evolution, 2007,54(6):1185-1196.
doi: 10.1007/s10722-006-9009-4
[27] LARSEN M, POLL L. Odour thresholds of some important aroma compounds in strawberries. Zeitschrift Für Lebensmittel Untersuchung Und Forschung, 1992,195:120-123.
doi: 10.1007/BF01201770
[28] SCHIEBERLE P, HOFMANN T. Evaluation of the character impact odorants in fresh strawberry juice by quantitative measurements after sensory studies on model mixtures. Journal of Agricultural and Food Chemistry, 1997,45(1):227-232.
doi: 10.1021/jf960366o
[29] OLBRICHT K, GRAFE C, WEISS K, ULRICH D. Inheritance of aroma compounds in a model population of Fragaria × ananassa Duch. Plant Breeding, 2007,127(1):87-93.
[30] 向仕华, 郑思乡, 赵雁, 关文灵, 李益, 刘妍, 张喜艳. 不同倍性东方百合杂交后代染色体数目观察. 云南农业大学学报, 2007,22(5):631-634.
XIANG S H, ZHENG S X, ZHAO Y, GUANG W L, LI Y, LIU Y, ZHANG X Y. Chromosome number observation on the hybrid generations of different ploidy Lilium oriental. Journal of Yunnan Agricultural University, 2007,22(5):631-634. (in Chinese)
[31] YANAGI T, HUMMER K E, IWATA T, SONE K, NATHEWET P, TAKAMURA T. Aneuploid strawberry (2n=8x+2=58) was developed from homozygous unreduced gamete (8x) produced by second division restitution in pollen. Scientia Horticulturae, 2010,125(2):123-128.
doi: 10.1016/j.scienta.2010.03.015
[32] RHO I R, HWANG Y J, LEE H I, BYUNG K, LEE C H. Interspecific hybridization of diploids and octoploids in strawberry. Scientia Horticulturae, 2012,134:46-52.
doi: 10.1016/j.scienta.2011.10.021
[33] FORNEY C F, KALT W, JORDAN M A. The composition of strawberry aroma is influenced by cultivar, maturity and storage. HortScience, 2000,35(6):1022-1026.
doi: 10.21273/HORTSCI.35.6.1022
[34] GOFF S A, KLEE H J. Plant volatile compounds: Sensory cues for health and nutritional value. Science, 2006,311(5762):815-819.
doi: 10.1126/science.1112614 pmid: 16469919
[1] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[2] HUANG LiPeng, ZHANG XiuYuan, WANG yang, FU YanDong, ZHAI Heng, SHAO XiaoJie. Effects of Seawater Irrigation on Fruit Quality of Cabernet Sauvignon [J]. Scientia Agricultura Sinica, 2017, 50(18): 3581-3590.
[3] ZHU Yin, YANG Ting, SHI Jiang, YU Fang-lin, DAI Wei-dong, TAN Jun-feng, GUO Li, ZHANG Yue, PENG Qun-hua, Lü Hai-peng, LIN Zhi. Analysis of Aroma Components in Xihu Longjing Tea by Comprehensive Two-Dimensional Gas Chromatography- Time-of-Flight Mass Spectrometry [J]. Scientia Agricultura Sinica, 2015, 48(20): 4120-4146.
[4] CHEN Xue-Sen, SONG Jun, GAO Li-Ping, JI Xiao-Hao, ZHANG Zong-Ying, MAO Zhi-Quan, ZHANG Yan-Min, LIU Da-Liang, ZHANG Rui, LI Min. Developing Mechanism of Fruits Texture in ‘Jonagold’ Apple and Its Crisp Flesh Sport [J]. Scientia Agricultura Sinica, 2014, 47(4): 727-735.
[5] ZHANG Ying,LI Xin-lei,WANG Yan,TIAN Min,FAN Miao-hua
. Changes of Aroma Components in Oncidium Sharry Baby in Different Florescence and Flower Parts
[J]. Scientia Agricultura Sinica, 2011, 44(1): 110-117 .
[6] SONG Zhao-peng,WU Sheng-jiang,GAO Yuan,XU Zi-cheng,ZHANG Wei-jian,GONG Chang-rong
. The Degradation Mechanism of Carotenoids in Flue-Cured Tobacco and the Changes of the Related Aroma Components in the Yellowing Stage During the Bulk Curing Process
[J]. Scientia Agricultura Sinica, 2010, 43(20): 4246-4254 .
[7] TIAN Chang-ping,WANG Yan-ling,LIU Zun-chun,WANG Chuan-zeng,SUN Jia-zheng,WANG Na,CHEN Xue-sen
. Effect of 1-Methylcyclopropene and Nitric Oxide on Main Fruit Quality of ‘Whangkeumbae’ Pear and Related Enzymes of Fatty Acid Metabolism During Storage
[J]. Scientia Agricultura Sinica, 2010, 43(14): 2962-2972 .
[8] WANG Yong-qin,TIAN Bao-hua,LIANG Yi
. Production and Characterization of Interspecific Hybrids Between Welsh Onion and Onion
[J]. Scientia Agricultura Sinica, 2010, 43(10): 2115-2121 .
[9] ZHANG Chun-yu,LI Ya-dong,ZHANG Zhi-dong,LIU Hai-guang,WU Lin,WANG Jing-ying
. Changes of Aroma Components of Different Developmental Fruits of High-Bush Blueberry #br# [J]. Scientia Agricultura Sinica, 2009, 42(9): 3216-3223 .
[10] . Advances in the study of Tomato Aroma Components [J]. Scientia Agricultura Sinica, 2008, 41(5): 1444-1451 .
[11] . Changes of Aroma Components in‘Hongdeng’Sweet Cherry [J]. Scientia Agricultura Sinica, 2007, 40(6): 1222-1228 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!