Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (17): 3496-3508.doi: 10.3864/j.issn.0578-1752.2020.17.007
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles Next Articles
SHI YaJiao1,2(),CHEN PengFei1,3(
)
[1] | 陈鹏飞. 无人机在农业中的应用现状与展望. 浙江大学学报:农业与生命科学版, 2018,44(4):399-406. |
CHEN P F. Applications and trends of unmanned aerial vehicle in agriculture. Journal of Zhejiang University (Agriculture and Life Sciences), 2018,44(4):399-406. (in Chinese) | |
[2] | HUETE A R. A soil-adjusted vegetation index (SAVI). R, 1998,25(3):295-309. |
[3] |
QI J, CHEHBOUNI A, HUETE A R, KERR Y H, SOROOSHIAN S. A modified soil adjusted vegetation index. Remote Sensing of Environment, 1994,48(2):119-126.
doi: 10.1016/0034-4257(94)90134-1 |
[4] |
RONDEAUX G, STEVEN M, BARET F. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 1996,55(2):95-107.
doi: 10.1016/0034-4257(95)00186-7 |
[5] | 张智韬, 边江, 韩文霆, 付秋萍, 陈硕博, 崔婷. 剔除土壤背景的棉花水分胁迫无人机热红外遥感诊断. 农业机械学报, 2018,49(10):257-267. |
ZHANG Z T, BIAN J, HAN W T, FU Q P, CHEN S B, CUI T. Diagnosis of cotton water stress using unmanned aerial vehicle thermal infrared remote sensing after removing soil background. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10):257-267. (in Chinese) | |
[6] |
陈鹏飞, 梁飞. 基于低空无人机影像光谱和纹理特征的棉花氮素营养诊断研究. 中国农业科学, 2019,52(13):2220-2229.
doi: 10.3864/j.issn.0578-1752.2019.13.003 |
CHEN P F, LIANG F. Cotton nitrogen nutrition diagnosis based on spectrum and texture feature of images from low altitude unmanned aerial vehicle. Scientia Agricultura Sinica, 2019,52(13):2220-2229. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.13.003 |
|
[7] | 刘帅兵, 杨贵军, 景海涛, 冯海宽, 李贺丽, 陈鹏, 杨文攀. 基于无人机数码影像的冬小麦氮含量反演. 农业工程学报, 2019,35(11):75-85. |
LIU S B, YANG G J, JING H T, FENG H K, LI H L, CHEN P, YANG W P. Retrieval of winter wheat nitrogen content based on UAV digital image. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(11):75-85. (in Chinese) | |
[8] |
BLASCHKE T, HAY G J, KELLY M, KELLY M, LANG S, HOFMANN P, ADDINK E, FEITOSA R Q, VAN DER MEER F, VAN DER WERFF H, VAN COILLIE F. Geographic object-based image analysis - Towards a new paradigm. ISPRS Journal of Photogrammetry & Remote Sensing, 2014,87(100):180-191.
doi: 10.1016/j.isprsjprs.2013.09.014 pmid: 24623958 |
[9] |
MENEGUZZO D M, LIKNES G C, NELSON M D. Mapping trees outside forests using high-resolution aerial imagery: A comparison of pixel-based and object-based classification approaches. Environmental Monitoring and Assessment, 2013,185(8):6261-6275.
doi: 10.1007/s10661-012-3022-1 pmid: 23255169 |
[10] |
TORRES-SÁNCHEZ J, LÓPEZ-GRANADOS F, PEÑA J M. An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops. Computers and Electronics in Agriculture, 2015,114:43-52.
doi: 10.1016/j.compag.2015.03.019 |
[11] | 韩文霆, 张立元, 张海鑫, 师志强, 苑梦婵, 王紫军. 基于无人机遥感与面向对象法的田间渠系分布信息提取. 农业机械学报, 2017,48(3):205-214. |
HAN W T, ZHANG L Y, ZHANG H X, SHI Z Q, YUAN M C, WANG Z J. Extraction method of sublateral canal distribution information based on UAV remote sensing. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(3):205-214. (in Chinese) | |
[12] |
DESCLÉE B, BOGAERT P, DEFOURNY P. Forest change detection by statistical object-based method. Remote Sensing of Environment, 2006,102(1):1-11.
doi: 10.1016/j.rse.2006.01.013 |
[13] |
BAUMGARTNER J, GIMENEZ J, SCAVUZZO M, PUCHETA J. A new approach to segmentation of multispectral remote sensing images based on MRF. IEEE Geoscience and Remote Sensing Letters, 2015,12(8):1720-1724.
doi: 10.1109/LGRS.2015.2421736 |
[14] |
JOHNSON B A, BRAGAIS M, ENDO I, MAGCALE-MACANDOG D B, MACANDOG P. Image segmentation parameter optimization considering within-and between-segment heterogeneity at multiple scale levels: Test case for mapping residential areas using landsat imagery. ISPRS International Journal of Geo-Information, 2015,4(4):2292-2305.
doi: 10.3390/ijgi4042292 |
[15] |
殷瑞娟, 施润和, 李镜尧. 一种高分辨率遥感影像的最优分割尺度自动选取方法. 地球信息科学学报, 2013,15(6):902-910.
doi: 10.3724/SP.J.1047.2014.00902 |
YIN R J, SHI R H, LI J Y. Automatic selection of optimal segmentation scale of high-resolution remote sensing images. Journal of Geo-Information Science, 2013,15(6):902-910. (in Chinese)
doi: 10.3724/SP.J.1047.2014.00902 |
|
[16] | KIM M, MADDEN M, WARNER T. Estimation of optimal image object size for the segmentation of forest stands with multispectral IKONOS imagery//BLASCHKE T, LANG S, HAY G J. Object-Based Image Analysis. Berlin, Germany: Springer Berlin Heidelberg, 2008: 291-307. |
[17] |
DRǍGUT L, TIEDE D, LEVICK S R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. International Journal of Geographical Information Science, 2010,24(6):859-871.
doi: 10.1080/13658810903174803 |
[18] |
DRĂGUT L, CSILLIK O, EISANK C, TIEDE D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,88:119-127.
doi: 10.1016/j.isprsjprs.2013.11.018 |
[19] |
JOHNSON B, XIE Z. Unsupervised image segmentation evaluation and refinement using a multi-scale approach. ISPRS Journal of Photogrammetry and Remote Sensing, 2011,66(4):473-483.
doi: 10.1016/j.isprsjprs.2011.02.006 |
[20] |
ESPINDOLA G M, CAMARA G, REIS I A, BINS L S, MONTEIRO A M. Parameter selection for region‐growing image segmentation algorithms using spatial autocorrelation. International Journal of Remote Sensing, 2006,27(14):3035-3040.
doi: 10.1080/01431160600617194 |
[21] |
GEORGANOS S, LENNERT M, GRIPPA T, VANHUYSSE S, JOHNSON B, WOLFF E. Normalization in unsupervised segmentation parameter optimization: A solution based on local regression trend analysis. Remote Sensing, 2018,10(2):222.
doi: 10.3390/rs10020222 |
[22] | 何敏, 张文君, 王卫红. 面向对象的最优分割尺度计算模型. 大地测量与地球动力学, 2009,29(1):106-109. |
HE M, ZHANG W J, WANG W H. Optimal segmentation scale model based on object-oriented analysis method. Journal of Geodesy and Geodynamics, 2009,29:106-109. (in Chinese) | |
[23] |
YANG J, LI P, HE Y. A multi-band approach to unsupervised scale parameter selection for multi-scale image segmentation. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,94:13-24.
doi: 10.1016/j.isprsjprs.2014.04.008 |
[24] |
YANG J, HE Y, WENG Q. An automated method to parameterize segmentation scale by enhancing intrasegment homogeneity and intersegment heterogeneity. IEEE Geoscience and Remote Sensing Letters, 2015,12(6):1282-1286.
doi: 10.1109/LGRS.2015.2393255 |
[25] | 张俊, 汪云甲, 李妍, 王行风. 一种面向对象的高分辨率影像最优分割尺度选择算法. 科技导报, 2009,27(21):91-94. |
ZHANG J, WANG Y J, LI Y, WANG X F. An object-oriented optimal scale choice method for high spatial resolution remote sensing image. Science and Technology Review, 2009,27(21):91-94. (in Chinese) | |
[26] |
WOODCOCK C E, STRAHLER A H. The factor of scale in remote sensing. Remote sensing of Environment, 1987,21(3):311-332.
doi: 10.1016/0034-4257(87)90015-0 |
[27] |
王志华, 孟樊, 杨晓梅, 杨丰硕, 方豫. 高空间分辨率遥感影像分割尺度参数自动选择研究. 地球信息科学学报, 2016,18(5):639-648.
doi: 10.3724/SP.J.1047.2016.00639 |
WANG Z H, MENG F, YANG X M, YANG F S, FANG Y. Study on the automatic selection of segmentation scale parameters for high spatial resolution remote sensing images. Journal of Geo-Information Science, 2016,18(5):639-648. (in Chinese)
doi: 10.3724/SP.J.1047.2016.00639 |
|
[28] |
ZHANG X, XIAO P, FENG X, FENG L, YE N. Toward evaluating multiscale segmentations of high spatial resolution remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(7):3694-3706.
doi: 10.1109/TGRS.2014.2381632 |
[29] |
BÖCK S, IMMITZER M, ATZBERGER C. On the objectivity of the objective function-problems with unsupervised segmentation evaluation based on global score and a possible remedy. Remote Sensing, 2017,9(8):769.
doi: 10.3390/rs9080769 |
[1] | . Maize Disease Identifying System Based Image Recognition [J]. Scientia Agricultura Sinica, 2007, 40(4): 698-703 . |
|