Scientia Agricultura Sinica ›› 2014, Vol. 47 ›› Issue (19): 3780-3790.doi: 10.3864/j.issn.0578-1752.2014.19.006
• TILLAGE & CULTIVATION·PHYSIOLOGY & ECOLOGY • Previous Articles Next Articles
LI Zhen-hai1,2,3, XU Xin-gang1,2, JIN Xiu-liang1,2,4, ZHANG Jing-cheng1,2, SONG Xiao-yu1,2, SONG Sen-nan1,2,4, YANG Gui-jun1,2, WANG Ji-hua1,2
[1] 李少昆, 谭海珍, 王克如, 肖春华, 谢瑞芝, 高世菊. 小麦籽粒蛋白质含量遥感监测研究进展. 农业工程学报, 2009, 25(2): 302-307. Li S K, Tan H Z, Wang K R, Xiao C H, Xie R Z, Gao S J. Research progress in wheat grain protein content monitoring using remote sensing. Transactions of the CSAE, 2009, 25(2): 302-307. (in Chinese) [2] 王纪华, 李存军, 刘良云, 黄文江, 赵春江. 作物品质遥感监测预报研究进展. 中国农业科学, 2008, 41(9): 2633-2640. Wang J H, Li C J, Liu L Y, Huang W J, Zhao C J. Progress of remote sensing monitoring and forecasting crop quality. Scientia Agricultura Sinica, 2008, 41(9): 2633-2640. (in Chinese) [3] 黄文江, 王纪华, 刘良云, 赵春江, 宋晓宇, 马智宏. 冬小麦品质的影响因素及高光谱遥感监测方法. 遥感技术与应用, 2004, 19(3): 143-148. Huang W J, Wang J H, Liu L Y, Zhao C J, Song X Y, Ma Z H. Study on grain quality effecting factors and monitoring methods by using hyperspectral data in winter wheat. Remote Sensing Technology and Application, 2004, 19(3): 143-148. (in Chinese) [4] 王纪华, 黄文江, 赵春江, 杨敏华, 王之杰. 利用光谱反射率估算叶片生化组分和籽粒品质指标研究. 遥感学报, 2003, 7(4): 277-284. Wang J H, Huang W J, Zhao C J, Yang M H, Wang Z J. The inversion of leaf biochemical components and grain quality indicators of winter wheat with spectral reflectance. Journal of Remote Sensing, 2003, 7(4): 277-284. (in Chinese) [5] 曹广才, 王绍中. 小麦品质生态. 北京: 中国科学技术出版社, 1994. Cao G C, Wang S Z. Wheat Ecology of Quality. Beijing: China Science and Technology Press, 1994. (in Chinese) [6] 曹卫星, 姜东, 郭文善, 王龙俊. 小麦品质生理生态及调优技术. 北京: 中国农业出版社, 2005. Cao W X, Jiang D, Guo W S, Wang L J. Wheat Quality Physiological Ecology and Tuning Techniques. Beijing: China Agriculture Press, 2005. (in Chinese) [7] Matsunaka T, Watanabe Y, Miyawaki T, Lchikawa N. Prediction of grain protein content in winter wheat through leaf color measurements using a chlorophyll meter. Soil Science and Plant Nutrition, 1997, 43(1): 127-134. [8] Boegh E, Søgaard H, Broge N, Hasager C B, Jensen N O, Scheled K, Thomsen A. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment, 2002, 81(2): 179-193. [9] Liu L Y, Wang J H, Bao Y S, Huang W J, Ma Z H, Zhao C J. Predicting winter wheat condition, grain yield and protein content using multi‐temporal EnviSat‐ASAR and Landsat TM satellite images. International Journal of Remote Sensing, 2006, 27(4): 737-753. [10] Zhao C J, Liu L Y, Wang J H, Huang W J, Song X Y, Li C J. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress. International Journal of Applied Earth Observation and Geoinformation, 2005, 7(1): 1-9. [11] Wang Z J, Wang J H, Liu L Y, Huang W J, Zhao C J, Wang C Z. Prediction of grain protein content in winter wheat (Triticum aestivum L.) using plant pigment ratio (PPR). Field Crops Research, 2004, 90(2): 311-321. [12] 李映雪, 朱艳, 田永超, 尤小涛, 周冬琴, 曹卫星. 小麦冠层反射光谱与籽粒蛋白质含量及相关品质指标的定量关系. 中国农业科学, 2005, 38(7): 1332-1338. Li Y X, Zhu Y, Tian Y C, You X T, Zhou D Q, Cao W X. Relationship of grain protein content and relevant quality traits to canopy reflectance spectra in wheat. Scientia Agricultra Sinica, 2005, 38(7): 1332-1338. (in Chinese) [13] 田永超, 朱艳, 曹卫星, 范雪梅, 刘小军. 利用冠层反射光谱和叶片 SPAD 值预测小麦籽粒蛋白质和淀粉的积累. 中国农业科学, 2004, 37(6): 808-813. Tian Y C, Zhu Y, Cao W X, Fan X M, Liu X J. Monitoring protein and starch accumulation in wheat grains with leaf SPAD and canopy spectral reflectance. Scientia Agricultra Sinica, 2004, 37(6): 808-813. (in Chinese) [14] 李卫国, 王纪华, 赵春江, 刘良云, 宋晓宇, 童庆禧. 基于 NDVI 和氮素积累的冬小麦籽粒蛋白质含量预测模型. 遥感学报, 2008, 12(3): 506-514. Li W G, Wang J H, Zhao C J, Liu L Y, Song X Y, Tong Q X. A model for predicting protein content in winter wheat grain based on Land-Sat TM image and nitrogen accumulation. Journal of Remote Sensing, 2008, 12(3): 506-514. (in Chinese) [15] Reyniers M, Vrindts E, De Baerdemaeker J. Comparison of an aerial-based system and an on the ground continuous measuring device to predict yield of winter wheat. European Journal of Agronomy, 2006, 24(2): 87-94. [16] Pettersson C G, Eckersten H. Prediction of grain protein in spring malting barley grown in northern Europe. European Journal of Agronomy, 2007, 27(2): 205-214. [17] 陈鹏飞, 王吉顺, 潘鹏, 徐于月, 姚凌. 基于氮素营养指数的冬小麦籽粒蛋白质含量遥感反演. 农业工程学报, 2011, 27(9): 75-80. Chen P F, Wang J S, Pan P, Xu Y Y, Yao L. Remote detection of wheat grain protein content using nitrogen nutrition index. Transactions of the CSAE, 2011, 27(9): 75-80. (in Chinese) [18] Li C J, Wang J H, Wang Q, Wang D C, Song X Y, Wang Y, Huang W J. Estimating wheat grain protein content using multi-temporal remote sensing data based on partial least squares regression. Journal of Integrative Agriculture, 2012, 11(9): 1445-1452. [19] 金秀良, 徐新刚, 李振海, 王纪华. 基于新型植被指数对冬小麦蛋白质含量的估算研究. 光谱学与光谱分析, 2013, 33(9): 2541-2545. Jin X L, Xu X G, Li Z H, Wang J H. Estimation of winter wheat protein content based on new indexes and gray relational method. Spectroscopy and Spectral Analysis, 2013, 33(9): 2541-2545. (in Chinese) [20] 于振文. 作物栽培学总论, 北京: 中国农业出版社, 2005. Yu Z W. Overview of Crop Cultivation. Beijing: China Agriculture Press, 2005. (in Chinese) [21] 曹卫星. 数字农作技术. 北京: 科学出版社, 2008. Cao W X. Digital Farming Technology. Beijing: Science Press, 2008. (in Chinese) [22] Pan J, Zhu Y, Jiang D, Dai T B, Li Y X, Cao W X. Modeling plant nitrogen uptake and grain nitrogen accumulation in wheat. Field Crops Research, 2006, 97(2): 322-336. [23] Lemaire G, Jeuffroy M H, Gastal F. Diagnosis tool for plant and crop N status in vegetative stage: theory and practices for crop N management. European Journal of Agronomy, 2008, 28(4): 614-624. [24] Matsunaka T, Watanabe Y, Miyawaki T, Ichikawa N. Prediction of grain protein content in winter wheat through leaf color measurements using a chlorophyll meter. Soil Science and Plant Nutrition, 1997, 43(1): 127-134. [25] Pearson R L, Miller D L. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. Proceedings of the English International Sysposium on Remote Sensing of Environment, 1972, 2: 1375-1381. [26] Xue L H, Cao W X, Luo W H, Dai T B, Zhu Y. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agronomy Journal, 2004, 96(1): 135-142. [27] Zhu Y, Yao X, Tian Y C, Liu X J, Cao W X. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice. International Journal of Applied Earth Observation and Geoinformation, 2008, 10(1): 1-10. [28] Deering D W, Harlan J C. Monitoring the Vernal Advancement and Retrogradation (greenwave effect) of Natural Vegetation. Texas A & M University, Remote Sensing Center, 1974. [29] Baret F, Guyot G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 1991, 35(2): 161-173. [30] Penuelas J, Baret F, Filella I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 1995, 31(2): 221-230. [31] Daughtry C S T, Walthall C L, Kim M S, De Colstoun E B, McMurtrey J E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 2000, 74(2): 229-239. [32] Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 2001, 76(2): 156-172. [33] Haboudane D, Miller J R, Tremblay N, Zarco-Tejada P J, Dextraze L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 2002, 81(2): 416-426. [34] Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002, 81(2): 337-354. [35] Read J J, Tarpley L, McKinion J M, Reddy K R. Narrow-waveband reflectance ratios for remote estimation of nitrogen status in cotton. Journal of Environmental Quality, 2002, 31(5): 1442-1452. [36] Steddom K, Heidel G, Jones D, Rush C M. Remote detection of rhizomania in sugar beets. Phytopathology, 2003, 93(6): 720-726. [37] Metternicht G. Vegetation indices derived from high-resolution airborne videography for precision crop management. International Journal of Remote Sensing, 2003, 24(14): 2855-2877. [38] Dash J, Curran P J. Evaluation of the MERIS terrestrial chlorophyll index (MTCI). Advances in Space Research, 2007, 39(1): 100-104. [39] Gitelson A A, Vina A, Ciganda V, Rundquist D C, Arkebauer T J. Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 2005, 32, L080403. doi: 10.1029/2005GL022688 [40] Reyniers M, Walvoort D J J, De Baardemaaker J. A linear model to predict with a multi - spectral radiometer the amount of nitrogen in winter wheat. International Journal of Remote Sensing, 2006, 27(19): 4159-4179. [41] Eitel J U H, Long D S, Gessler P E, Smith A M S. Using in‐situ measurements to evaluate the new RapidEye™ satellite series for prediction of wheat nitrogen status. International Journal of Remote Sensing, 2007, 28(18): 4183-4190. [42] Chen P F, Haboudane D, Tremblay N, Wang J H, Vigneault P, Li B G. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sensing of Environment, 2010, 114(9): 1987-1997. [43] Fitzgerald G, Rodriguez D, O’Leary G. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index-the canopy chlorophyll content index (CCCI). Field Crops Research, 2010, 116(3): 318-324. [44] Tian Y C, Yao X, Yang J, Cao W X, Hannaway D B, Zhu Y. Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground-and space-based hyperspectral reflectance. Field Crops Research, 2011, 120(2): 299-310. [45] Mishra S, Mishra D R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll - a concentration in turbid productive waters. Remote Sensing of Environment, 2012, 117: 394-406. [46] Deng J L. Introduction to Grey Mathematics Resources Science. Wuhan: Huazhong University Press, 2010. [47] 曹明霞. 灰色关联分析模型及其应用的研究[D]. 南京: 南京航空航天大学, 2007. Cao M X. Research on grey incidence analysis model and its application [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese) [48] Geladi P, Kowalski B R. Partial least-squares regression: a tutorial. Analytica Chimica Acta, 1986, 185: 1-17. [49] 王纪华, 赵春江, 黄文江. 农业定量遥感基础与应用. 北京: 科学出版社, 2008. Wang J H, Zhao C J, Huang W J. Quantitative Remote Sensing of Agriculture: Theory and Application. Beijing: Science Press, 2008. (in Chinese) [50] 李卫国, 朱艳, 荆奇, 曹卫星. 水稻籽粒蛋白质积累的模拟模型研究. 中国农业科学, 2006, 39(3): 544-551. Li W G, Zhu Y, Jing Q, Cao W X. Modeling protein accumulation in rice grain. Scientia Agricultura Sinica, 2006, 39(3): 544-551. |
[1] | LI Ting, LI ShiQing, ZHAN Ai, LIU JianLiang. Effects of Film Mulching, Nitrogen Fertilizer, Plant Density and Its Interaction on Nitrogen Accumulation, Translocation and Production Efficiency of Spring Maize on Dryland of Loess Plateau [J]. Scientia Agricultura Sinica, 2018, 51(8): 1504-1517. |
[2] | CHEN Jie, TANG Liang, LIU Xiao-Jun, CAO Wei-Xing, ZHU Yan. Modeling Plant Nitrogen Uptake and Grain Protein Accumulation in Rice [J]. Scientia Agricultura Sinica, 2011, 44(10): 1997-2004. |
[3] | ,,,. Modeling Protein Accumulation in Rice Grain [J]. Scientia Agricultura Sinica, 2006, 39(03): 544-551 . |
|