Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (1): 67-76.doi: 10.3864/j.issn.0578-1752.2012.01.008

• PLANT PROTECTION • Previous Articles     Next Articles

Study on Ecological Niches of Main Predatory Arthropods in Integrated Rice-Duck Farming System

 QIN  Zhong, ZHANG  Jia-en, ZHANG  Jin, LUO  Shi-Ming   

  1. 1.华南农业大学农学院/农业部生态农业重点开放实验室/广东省高等学校农业生态与农村环境重点实验室,广州510642
  • Received:2011-03-18 Online:2012-01-01 Published:2011-09-16

Abstract: 【Objective】The objective of this study is to quantify resource utilization of main predatory arthropods in integrated rice-duck farming system and to explore their inner relationship in resource allocation. 【Method】Through field investigations on main predatory arthropods in the integrated rice-duck farming system and conventional rice cultivation system, the structure of the predatory arthropods communities and their niches were explored. Meanwhile, the quantitative distribution characters of each group in resource sequence and the condition of resource utilization were analyzed. 【Result】Dominant species of predatory arthropods in the integrated rice-duck farming system and conventional rice cultivation system were Erigonidae, Araneidae, Lycosldae and Tetragnathidae, in which the dominance index of Araneidae was the greatest, accounted for 0.4999 and 0.6665, respectively, in two rice cultivation systems. Foraging ducks in rice cropping field directly or indirectly influenced the number and distribution pattern of main predatory arthropods, thus leading to various degrees of changes in temporal-spatial dimensional niche breadth, niche overlap index and the niche proportional similarity. Temporal-spatial dimensions niche breadth of Erigonidae, Araneidae and Tetragnathidae were lower than those in the conventional rice cultivation system. The niche overlap indices of Erigonidae and Theridlidae, Tetragnathidae and Salticidae, Salticidae and Clubionidae, Clubionidae and Coccinellidae in the integrated rice-duck farming system were 70.65%-75.57% higher than those in the conventional rice cultivation system. 【Conclusion】Although the total individual numbers of predatory arthropods in the rice-duck farming system was 19.56% lower than those in the conventional rice cultivation system, group competition in the same resource sequence among main predatory arthropods became more intensified and time synchrony in resource utilization was more pronounced, which meant that predatory arthropods could make the best use of more potential resources in a more uniformed distribution and have a stronger controlling effect on pest population by longer occurrence time and continuous controls.

Key words: ecologicalniches, predatoryarthropods, communitystructure, integratedrice-duckfarming

[1] 王运兵, 秦雪峰, 李永铭, 潘鹏亮, 赵新亮, 韩清毅. 麦田主要害虫及其天敌时间生态位研究. 河南职业技术师范学院学报, 2002, 30(1): 26-28, 31.Wang Y B, Qin X F, Li Y M, Pan P L, Zhao X L, Han Q Y. Study on pest and their natural enemies time niche in wheat field. Journal of Henan Vocation-Technical Teachers College, 2002, 30(1): 26-28, 31. (in Chinese)

[2] 李志胜, 黄咏俏, 尤民生. 芥蓝田主要害虫种群生态位的研究. 昆虫知识, 2005, 42(4): 409-412.

Li Z S, Huang Y Q, You M S. The niche of key pests in Chinese kale fields. Chinese Bulletin of Entomology, 2005, 42(4): 409-412. (in Chinese)

[3] 上官小霞, 沈文君, 李生才. 棉田蜘蛛群落时空生态位研究. 中国生态农业学报, 2002, 10(4): 87-90.

Shangguan X X, Shen W J, Li S C. Study on the temporal-spatial niche of spider community in cotton field. Chinese Journal of Eco-Agriculture, 2002, 10(4): 87-90. (in Chinese)

[4] 宋翼营, 骆有庆, 石娟, 严晓素, 陈卫平, 蒋平. 松材线虫染病松树上钻蛀性昆虫生态位的研究. 北京林业大学学报, 2005, 27(6): 108-111.

Song Y Y, Luo Y Q, Shi J, Yan X S, Chen W P, Jiang P. Niche characteristics of boring insects within Pinus massoniana infected by Bursaphelenchus xylophilus. Journal of Beijing Forestry University, 2005, 27(6): 108-111. (in Chinese)

[5] De Meyer M, Robertson M P, Peterson A T, Mansell M W. Ecological niches and potential geographical distributions of Mediterranean fruit fly (Ceratitis capitata) and Natal fruit fly (Ceratitis rosa). Journal of Biogeography, 2008, 35: 270-281.

[6] Correia A M. Niche breadth and trophic diversity: feeding behaviour of the red swamp crayfish (Procambarus clarkii) towards environmental availability of aquatic macroinvertebrates in a rice field (Portugal). Acta Oecologica, 2002, 23: 421-429.

[7] Wang X Z, Xu W H, Ouyang Z Y, Liu J G, Xiao Y, Chen Y P, Zhao L J, Huang J Z. Application of ecological-niche factor analysis in habitat assessment of giant pandas. Acta Ecologica Sinica, 2008, 28(2): 821-828.

[8] Lewis W M. The ecological niche in aquatic ecosystems//Likens G E. Encyclopedia of Inland Waters. Surendra Kumar, 2009: 411-415.

[9] Pearman P B, Guisan A, Broennimann O, Randin C F. Niche dynamics in space and time. Trends in Ecology & Evolution, 2008, 23(3): 149-158.

[10] 杨云峰, 古德祥, 周之铭. 稻田蜘蛛的空间生态位的初步研究. 昆虫天敌, 1990, 12(3): 108-112.

Yang Y F, Gu D X, Zhou Z M. Study on spatial niches of spider in rice field. Natural Enemies of Insects, 1990, 12(3): 108-112. (in Chinese)

[11] Luo S P, Huang S S, Liang G W, Zhang Q W, Yuan W, Liu J L. Niches and interspecific competitions of wolf spiders and mirid bug, Cyrtorhinus lividipennis under three pest management strategies in paddy fields. Acta Ecologica Sinica, 2009, 29(4): 211-215.

[12] 张文庆, 张古忍, 古德祥. 稻飞虱及其节肢类捕食者的生态位关系研究. 中山大学学报论丛, 1995(2): 21-26.

Zhang W Q, Zhang G R, Gu D X. Niche analysis of rice planthopper and its main arthropod predators. Sun Yatsen University Forum, 1995(2): 21-26. (in Chinese)

[13] 吴进才, 陆自强, 杨金生, 束兆林. 稻田主要捕食性天敌的栖境生态位与捕食作用分析. 昆虫学报, 1993, 36(3): 323-331.

Wu J C, Lu Z Q, Yang J S, Shu Z L. Habitat niche and predation effect of natural enemies of insect pests in paddy field. Acta Entomologica Sinica, 1993, 36(3): 323-331. (in Chinese)

[14] 宋正钧, 唐贞兰. 水稻两种飞虱和两种天敌共存系统的生态位. 贵州农业科学, 1998, 26(2): 34-37.

Song Z J, Tang Z L. Ecological niches system of two plant hopper coexisted with two natural enemies in rice field. Guizhou Agricultural Sciences, 1998, 26(2): 34-37. (in Chinese)

[15] 王 智, 宋大祥, 朱明生. 低剂量农药对稻田蜘蛛生态位及控虫效能的影响. 河北大学学报: 自然科学版, 2006, 26(3): 278-282.

Wang Z, Song D X, Zhu M S. Influence of low dose pesticide on the spatial niche and insect controlling efficiency of paddy field spiders. Journal of Hebei University: Natural Science Edition, 2006, 26(3): 278-282. (in Chinese)

[16] 姜永厚, 吴进才, 徐建祥, 刘井兰, 邱慧敏, 杨国庆, 王洪全. 稻田蜘蛛生态位变化及杀虫剂对捕食功能的影响. 生态学报, 2002, 22(8): 1286-1292.

Jiang Y H, Wu J C, Xu J X, Liu J L, Qiu H M, Yang G Q, Wang H Q. Influence of seasonal and daily changes of spatial niche of spiders in paddy field and two insecticides to spatial niche and predatory function. Acta Ecologica Sinica, 2002, 22(8): 1286-1292. (in Chinese)

[17] 杨治平, 刘小燕, 黄璜, 刘大志, 胡立冬, 苏伟, 谭泗桥. 稻田养鸭对稻鸭复合系统中病、虫、草害及蜘蛛的影响. 生态学报, 2004, 24(12): 2756-2760.

Yang Z P, Liu X Y, Huang H, Liu D Z, Hu L D, Su W, Tan S Q. A study on the influence of rice-duck intergrowth on spider, rice diseases, insect and weeds in rice-duck complex ecosystem. Acta Ecologica Sinica, 2004, 24(12): 2756-2760. (in Chinese)

[18] 禹盛苗, 金千瑜, 欧阳由男, 许德海. 稻鸭共育对稻田杂草和病虫害的生物防治效应. 中国生物防治, 2004, 20(2): 99-102.

Yu S M, Jin Q Y, Ouyang Y N, Xu D H. Efficiency of controlling weeds, insect pests and diseases by raising ducks in the paddy fields. Chinese Journal of Biological Control, 2004, 20(2): 99-102. (in Chinese)

[19] 朱凤姑, 丰庆生, 诸葛梓. 稻鸭生态结构对稻田有害生物群落的控制作用. 浙江农业学报, 2004, 16(1): 37-41.

Zhu F G, Feng Q S, Zhuge Z. Control impact of rice-duck ecological structure on harmful biotic community of rice fields. Acta Agriculturae Zhejiangensis, 2004, 16(1): 37-41. (in Chinese)

[20] 章家恩, 许荣宝, 全国明, 徐华勤, 秦钟. 鸭稻共作对土壤微生物数量及其功能多样性的影响. 资源科学, 2009, 31(1): 56-62.

Zhang J E, Xu R B, Quan G M, Xu H Q, Qin Z. Effects of integrated rice-duck farming on soil microbial quantity and functional diversities. Resources Science, 2009, 31(1): 56-62. (in Chinese)

[21] 王 智, 李文健, 王文龙, 曾伯平, 颜亨梅, 王洪全. 稻田蜘蛛群落物种丰富度动态分析. 北华大学学报: 自然科学版, 2002, 3(1): 65-68.

Wang Z, Li W J, Wang W L, Zeng B P, Yan H M, Wang H Q. Dynamic analysis on the species richness of spider community in the different controlling rice field. Journal of Beihua University: Natural Science, 2002, 3(1): 65-68. (in Chinese)

[22] Levins R. Evolution in Changing Environments. Princeton, New Jersey: Princeton University Press, 1968.

[23] Hurlbert S H. The measurement of niche overlap and some relatives. Ecology, 1978, 59(1): 67-77.

[24] Abrams P. Some comments on measuring niche overlap. Ecology, 1980, 61(1): 44-49.

[25] 张金屯. 数量生态学. 北京: 科学出版社, 2004.Zhang J T. Quantitative Ecology. Beijing: Science Press, 2004. (in Chinese)
[1] WU Chuan-Dong, XIN Liang, LI Xiu-Ying, WANG Bao-Li, QU Dong. Effects of Long-term Fertilization on Diversity of Ammonia-Oxidizing Archaea Communities and Abundance in Dry Highland Soil of Loess Plateau [J]. Scientia Agricultura Sinica, 2011, 44(20): 4230-4239.
[2] JIAO Xiao-Guang, GAO Chong-Sheng, SUI Yue-Yu, ZHANG Xing-Yi, DING Guang-Wei. Research on Soil Microbial Ecology Under Different Soil Organic Matter Levels in Farmland [J]. Scientia Agricultura Sinica, 2011, 44(18): 3759-3767.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!