中国农业科学 ›› 2025, Vol. 58 ›› Issue (22): 4771-4785.doi: 10.3864/j.issn.0578-1752.2025.22.016

• 畜牧·兽医 • 上一篇    下一篇

基于猪肠道类器官模型的甘草次酸抗氧化功能及机制研究

李蕊彤(), 陈清梅, 徐建芳, 张军民, 司玮(), 张铁鹰()   

  1. 中国农业科学院北京畜牧兽医研究所/畜禽营养与饲养全国重点实验室,北京 100193
  • 收稿日期:2025-03-28 接受日期:2025-06-27 出版日期:2025-11-16 发布日期:2025-11-21
  • 通信作者:
    司玮,E-mail:
    张铁鹰,E-mail:
  • 联系方式: 李蕊彤,E-mail:lirruitong@163.com。
  • 基金资助:
    国家自然科学基金(32402808); 国家重点研发计划(2021YFD1300301); 中央级公益性科开院所基本科研业务费专项(2024-YWF-ZYSQ-03); 中国农业科学院科技创新工程(ASTIP-IAS-12)

Study on the Antioxidant Function and Mechanism of 18β-glycyrrhetinic Acid Using Porcine Intestinal Organoid Model

LI RuiTong(), CHEN QingMei, XU JianFang, ZHANG JunMin, SI Wei(), ZHANG TieYing()   

  1. State Key Laboratory of Animal Nutrition and Feeding/Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193
  • Received:2025-03-28 Accepted:2025-06-27 Published:2025-11-16 Online:2025-11-21

摘要:

【背景】氧化应激是影响猪肠道健康和生长发育的重要因素,开发天然高效的抗氧化活性物质对提升动物健康水平具有重要意义。甘草次酸(18β-glycyrrhetinic acid,GA)是一种来源于甘草的五环三萜类化合物,具有较强的抗氧化活性。【目的】基于猪肠道类器官构建氧化应激损伤模型,评估GA的抗氧化功能及其潜在机制,为GA作为畜禽饲料抗氧化添加剂的应用提供理论依据。【方法】以仔猪空肠组织为材料,分离并收集肠隐窝,采用三维培养体系构建猪肠道类器官。通过免疫荧光标记肠上皮干细胞及分化标志物(LGR5、β-catenin、Ki67、PCNA、C-Myc、CDX2和Lysozyme),验证类器官具备典型的肠上皮谱系结构。类器官传代培养48 h 后,分别给予0、100、250、500、750、1 000、1 500和2 000 μmol·L-1 H2O2处理类器官3 d,通过观察其出芽率、分支系数及分支情况,并结合EdU掺入试验评估细胞增殖活性,ROS荧光探针检测氧化水平,同时检测Wnt/β-catenin信号通路关键基因(Lgr5C-mycCyclin D1β-cateninPCNAAXIN2)表达水平,筛选建立氧化应激模型的最适H2O2浓度。在此基础上,分别添加10、50和100 μmol·L-1 GA,评价其对猪肠道类器官氧化应激损伤的缓解效果。通过综合分析类器官的形态学指标(出芽率、分支系数及分支情况)、EdU阳性细胞比例、ROS水平,以及Wnt/β-catenin通路关键蛋白(β-catenin、PCNA、LGR5、CDX2)表达水平,探讨GA的抗氧化潜能及其可能的作用机制。【结果】传代培养48 h 后,用1 mmol·L-1 H2O2处理猪肠道类器官3 d可稳定诱导氧化应激损伤,表现为出芽率、分支系数和EdU阳性细胞比例显著下降,Ki67表达下调,ROS水平升高,同时伴随Wnt/β-catenin信号通路异常激活(C-myc表达显著上调)。在正常培养条件下,10、50和100 μmol·L-1 GA均未对类器官的生长状态产生不良影响。在氧化应激条件下,100 μmol·L-1 GA缓解作用最为显著,可显著提高出芽率与分支系数,促进细胞增殖(EdU阳性细胞比例及Ki67表达上调),降低ROS积累水平,并抑制Wnt/β-catenin通路的激活(β-catenin、PCNA和LGR5蛋白表达下调)。【结论】成功构建了猪肠道类器官氧化应激模型,明确了GA在缓解类器官氧化应激损伤中的作用,并初步探讨了其作用机制。GA可通过改善类器官生长状态、促进细胞增殖、降低氧化水平,并抑制Wnt/β-catenin信号通路,发挥其抗氧化作用。本研究为GA在畜禽营养调控中的功能开发与应用提供了理论依据。

关键词: 甘草次酸, 猪肠道类器官, 氧化应激

Abstract:

【Background】Oxidative stress is a key factor compromising intestinal health and impeding the growth and development of pigs. Consequently, the identification and development of natural and effective antioxidant compounds are of great significance for enhancing animal health and production efficiency. 18β-Glycyrrhetinic acid (GA), a pentacyclic triterpenoid extracted from Glycyrrhiza spp., has been recognized for its antioxidant activity. 【Objective】This study aimed to establish an oxidative stress injury model based on porcine intestinal organoids to assess the antioxidant efficacy of GA and to explore its potential underlying mechanisms. The findings were intended to provide a theoretical foundation for the application of GA as a functional antioxidant additive in livestock and poultry nutrition. 【Method】Intestinal crypts were isolated and collected from the jejunal tissues of piglets and used to construct porcine intestinal organoids via a three-dimensional culture system. The structural and functional integrity of the organoids was confirmed by immunofluorescence staining for intestinal epithelial stem cell and differentiation markers, including LGR5, β-catenin, Ki67, PCNA, c-Myc, CDX2, and lysozyme, indicating the presence of typical intestinal epithelial lineages. After 48 hours of passaging, organoids were treated with hydrogen peroxide (H2O2) at concentrations of 0, 100, 250, 500, 750, 1 000, 1 500, and 2 000 μmol·L-1 for three days to induce oxidative stress, respectively. The optimal H2O2 concentration for model establishment was determined through comprehensive evaluation of morphological parameters (budding rate, branching coefficient, and bud condition), cellular proliferation activity (EdU incorporation and Ki67 expression), intracellular reactive oxygen species (ROS) levels (detected by fluorescent probes), and expression of key genes in the Wnt/β-catenin signaling pathway (Lgr5, C-myc, Cyclin D1, β-catenin, PCNA, and AXIN2). Subsequently, GA at concentrations of 10, 50, and 100 μmol·L-1 was applied to the oxidative stress model to assess its protective effect. The antioxidant capacity and underlying mechanism of GA were investigated by analyzing organoid morphology, proliferation activity, intracellular ROS accumulation, and expression of representative proteins associated with the Wnt/β-catenin signaling pathway (β-catenin, PCNA, LGR5, and CDX2). 【Result】After 48 hours of passaging, treatment of porcine intestinal organoids with 1 mmol·L-1 H2O2 for three days successfully established a stable oxidative stress injury model. This was demonstrated by a significant decrease in the organoid budding rate and branching coefficient, accompanied by a marked reduction in the proportion of EdU-positive cells and Ki67 expression. Moreover, oxidative stress induced activation of the Wnt/β-catenin signaling pathway, as evidenced by significant upregulation of C-myc expression. Under normal culture conditions, GA at concentrations of 10, 50, and 100 μmol·L-1 exerted no adverse effects on organoid growth. However, under oxidative stress conditions, 100 μmol·L-1 GA exhibited the most pronounced protective effect, significantly enhancing the budding rate and branching coefficient, and promoting cell proliferation as indicated by increased EdU-positive cell proportion and elevated Ki67 expression. Additionally, GA treatment effectively reduced ROS accumulation and inhibited the activation of the Wnt/β-catenin pathway, demonstrated by the downregulation of β-catenin, PCNA, and LGR5 protein expression levels. 【Conclusion】In this study, a porcine intestinal organoid model of oxidative stress was successfully established. Based on this model, the protective role of GA against oxidative damage in organoids was confirmed, and its underlying mechanism was preliminarily elucidated. GA exerted notable antioxidant activity by improving organoid morphological development, promoting cellular proliferation, reducing intracellular ROS levels, and downregulating the Wnt/β-catenin signaling pathway. These findings laid a theoretical foundation for the functional development and practical application of GA in the nutritional regulation and health management of livestock and poultry.

Key words: 18β-glycyrrhetinic acid, porcine intestinal organoid, oxidative stress