中国农业科学 ›› 2025, Vol. 58 ›› Issue (9): 1719-1734.doi: 10.3864/j.issn.0578-1752.2025.09.004

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

基于多角度成像与机器学习的水稻叶面积精确估算

王爱冬1(), 李瑞杰1,2(), 冯向前1,2, 洪卫源1, 李子秋1, 张晓果1, 王丹英1, 陈松1()   

  1. 1 中国水稻研究所/水稻生物育种全国重点实验室,杭州 311400
    2 长江大学农学院,湖北荆州 434025
  • 收稿日期:2024-09-30 接受日期:2024-12-29 出版日期:2025-05-08 发布日期:2025-05-08
  • 通信作者:
    陈松,E-mail:
  • 联系方式: 王爱冬,E-mail:wangaidongjy@163.com。李瑞杰,E-mail:2023710776@yangtzeu.edu.cn。王爱冬和李瑞杰为同等贡献作者。
  • 基金资助:
    国家重点研发计划(2022YFD2300702-2); 国家水稻产业技术体系(CARS-01); 中国农业科学院科技创新工程重大科研任务(CAAS-ZDRW202001)

Multi-Angle Imaging and Machine Learning Approaches for Accurate Rice Leaf Area Estimation

WANG AiDong1(), LI RuiJie1,2(), FENG XiangQian1,2, HONG WeiYuan1, LI ZiQiu1, ZHANG XiaoGuo1, WANG DanYing1, CHEN Song1()   

  1. 1 China National Rice Research Institute/State Key Laboratory of Rice Biology and Breeding, Hangzhou 311400
    2 College of Agriculture, Yangtze University, Jingzhou 434025, Hubei
  • Received:2024-09-30 Accepted:2024-12-29 Published:2025-05-08 Online:2025-05-08

摘要:

【目的】 水稻叶面积是反映其光合效率、能量转化和干物质积累能力的重要生理指标,开发简单而高效的水稻叶面积拍摄体系和预测方法,为快速且精确地测定叶面积提供理论基础和技术支持。【方法】 以籼稻、粳稻及籼粳杂交稻代表性品种秀水134、黄华占和甬优1540为供试材料,在水稻生长关键时期采集地上部叶片面积的同时,分别拍摄俯拍和侧拍图像。基于PlantScreen高通量模块化植物表型组平台,提取形态学和色彩特征信息。在此基础上,利用不同特征筛选方法(Pearson相关系数、最大信息系数MIC和递归特征消除RFE),结合机器学习模型(支持向量回归SVR、随机森林回归RFR和XGBoost)和深度学习模型(ResNet50、AlexNet、VGG和SeNet),建立简易高效的图像采集体系与水稻叶面积预测模型。【结果】 (1)结合俯拍与侧拍多角度图像的拍摄模式在LA预测中表现优异,其预测能力(R 2=0.76—0.82,CV=5.5%—13.7%)显著优于单一视角图像的方法(R 2=0.51—0.78,CV=9.7%—27.5%),其中一张俯拍与一张侧拍的拍照系统综合效果最优(R 2=0.79,RMSE=95.3,MAE=77.02,CV=6.5%);(2)利用最大信息系数(MIC)算法进行关键特征筛选,结合随机森林回归模型分析结果,MIC-RFR模型表现出色(R 2=0.84,RMSE=81.8,MAE=63.3),明显优于其他机器学习模型。深度学习模型SeNet(R 2=0.80,RMSE=98.1,MAE=74.7)优于传统的ResNet50和AlexNet模型,但与MIC-RFR模型相比无显著优势。(3)特征分析表明,侧拍图像中的投影面积、株高和俯拍图像中的叶周长、绿黄色特征对叶面积预测贡献显著。其中,侧拍投影面积的贡献(+117.4)远大于其他特征(1.48—18.87)。【结论】 使用简洁高效的叶面积预测拍摄体系(一张俯拍结合一张侧拍图像),结合MIC-RFR模型,可以满足单株水稻叶面积的高精度、稳定预测需求。该方法可为精准农业和作物育种提供有力的工具和技术支持。

关键词: 多角度RGB图像, 形态学特征, 色彩特征, 叶面积预测, 机器学习, 水稻

Abstract:

【Objective】 Rice leaf area is a critical physiological metric that indicates photosynthetic efficiency, energy conversion, and dry matter accumulation capacity. This study aimed to develop a simple and efficient rice leaf area imaging system and prediction method, so as to provide a theoretical foundation and technical support for rapid and accurate leaf area measurement.【Method】 The study utilized representative rice varieties—Xiushui 134 (indica), Huanghuazhan (japonica), and Yongyou 1540 (indica-japonica hybrid)—as experimental materials. Leaf area data were collected from the aboveground parts during critical growth periods, and both flat-overhead-view and side-view images were captured. Using the PlantScreen high-throughput modular plant phenotyping platform, morphological and color feature information was extracted. Based on these data, various feature selection methods(Pearson correlation coefficient, maximal information coefficient (MIC), and recursive feature elimination (RFE)) combined with machine learning models (support vector regression (SVR), random forest regression (RFR), and XGBoost) and deep learning models (ResNet50, AlexNet, VGG, and SeNet) were employed to develop a simplified and efficient rice leaf area prediction model.【Result】 (1) An imaging approach that integrated flat-overhead and multi-angle side views significantly outperformed single-view methods for leaf area prediction, with R² values of 0.76-0.82 and coefficients of variation (CV) of 5.5%-13.7%, compared with R² values of 0.51-0.78 and CVs of 9.7%-27.5% for single views. The optimal system used one flat-overhead-view and one side-view image, achieving R² = 0.79, root mean square error (RMSE) = 95.3, mean absolute error (MAE) = 77.02, and CV = 6.5%. (2) Using MIC algorithm for key feature selection combined with the random forest regression model achieved excellent results (= 0.84, RMSE = 81.8, and MAE = 63.3), noticeably outperforming other machine learning models. The deep learning model SeNet (R2 = 0.80, RMSE = 98.1, and MAE = 74.7) outperformed traditional ResNet50 and AlexNet models but showed no significant advantage over the MIC-RFR model. (3) Feature analysis indicated that the projected area and plant height from side-view images, as well as leaf perimeter and green-yellow characteristics from flat-overhead-view images, significantly contributed to leaf area prediction. The contribution of the side-view projected area (+117.4) was substantially greater than that of other features (ranging from 1.48 to 18.87).【Conclusion】 This study employed a simple and efficient leaf area prediction imaging system (one flat-overhead-view combined with one side-view image), integrated with the MIC-RFR model, to meet the high-precision and stable prediction requirements for individual rice leaf area. This method provided a powerful tool and technical support for precision agriculture and crop breeding.

Key words: multi-angle RGB image, morphological feature, color feature, leaf area prediction, machine learning, rice