[1] |
|
|
WANG X, CAI J, ZHOU Q, DAI T B, JIANG D. Physiological mechanisms of abiotic stress priming induced the crops stress tolerance: A review. Scientia Agricultura Sinica, 2021, 54(11): 2287-2301. doi: 10.3864/j.issn.0578-1752.2021.11.004. (in Chinese)
|
[2] |
简令成, 卢存福, 李积宏, LI Paul H. 适宜低温锻炼提高冷敏感植物玉米和番茄的抗冷性及其生理基础. 作物学报, 2005, 31(8): 971-976.
|
|
JIAN L C, LU C F, LI J H, LI P H. Increment of chilling tolerance and its physiological basis in chilling-sensitive corn sprouts and tomato seedlings after cold-hardening at optimum temperatures. Acta Agronomica Sinica, 2005, 31(8): 971-976. (in Chinese)
|
[3] |
李建明, 黄志, 王忠红. 低温锻炼对冷胁迫下甜瓜幼苗抗氧化酶活性与质膜透性的影响. 西北农业学报, 2007, 16(1): 168-171.
|
|
LI J M, HUANG Z, WANG Z H. Effects of cold acclimation on anti-oxidative enzyme activities and piasm-membrane permeability of muskmelon seedlings under cold stress. Acta Agriculturae Boreali- Occidentalis Sinica, 2007, 16(1): 168-171. (in Chinese)
|
[4] |
LI X N, CAI J, LIU F L, DAI T B, CAO W X, JIANG D. Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat. Plant Physiology and Biochemistry, 2014, 82: 34-43.
doi: 10.1016/j.plaphy.2014.05.005
pmid: 24887010
|
[5] |
WANG W L, WANG X, ZHANG J, HUANG M, CAI J, ZHOU Q, DAI T B, JIANG D. Salicylic acid and cold priming induce late-spring freezing tolerance by maintaining cellular redox homeostasis and protecting photosynthetic apparatus in wheat. Plant Growth Regulation, 2020, 90(1): 109-121.
|
[6] |
TOMINAGA Y, KANAZAWA A, SHIMAMOTO Y. Identification of cold-responsive genes in perennial ryegrass (Lolium perenne L.) by a modified differential display method. Journal of Japanese Society of Grassland Sciences, 2001, 47(5): 516-519.
|
[7] |
DI Q H, LI Y S, LI S Z, SHI A K, ZHOU M D, REN H Z, YAN Y, HE C X, WANG J, SUN M T, YU X C. Photosynthesis mediated by RBOH-dependent signaling is essential for cold stress memory. Antioxidants, 2022, 11(5): 969.
|
[8] |
赵世杰, 许长成, 邹琦, 孟庆伟. 植物组织中丙二醛测定方法的改进. 植物生理学通讯, 1994, 30(3): 207-210.
|
|
ZHAO S J, XU C C, ZOU Q, MENG Q W. Improvement of determination method of malondialdehyde in plant tissues. Plant Physiology Communications, 1994, 30(3): 207-210. (in Chinese)
|
[9] |
DONG X, BI H, WU G, AI X. Drought-induced chilling tolerance in cucumber involves membrane stabilisation improved by antioxidant system. International Journal of Plant Production, 2012, 7: 67-79.
|
[10] |
SEMENIUK P, MOLINE H E, ABBOTT J A. A comparison of the effects of ABA and an antitranspirant on chilling injury of Coleus, cucumbers, and Dieffenbachia. Journal of the American Society for Horticultural Science, 1986, 111(6): 866-868.
|
[11] |
王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系. 植物生理学通讯, 1990, 26(6): 55-57.
|
|
WANG A G, LUO G H. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiology Communications, 1990, 26(6): 55-57. (in Chinese)
|
[12] |
THORDAL-CHRISTENSEN H, ZHANG Z G, WEI Y D, COLLINGE D B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. The Plant Journal, 1997, 11(6): 1187-1194.
|
[13] |
JABS T, DIETRICH R A, DANGL J L. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science, 1996, 273(5283): 1853-1856.
|
[14] |
BEYER W F Jr, FRIDOVICH I. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 1987, 161(2): 559-566.
doi: 10.1016/0003-2697(87)90489-1
pmid: 3034103
|
[15] |
OMRAN R G. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiology, 1980, 65(2): 407-408.
doi: 10.1104/pp.65.2.407
pmid: 16661201
|
[16] |
NAKANO Y, ASADA K. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant and Cell Physiology, 1987, 28(1): 131-140.
|
[17] |
FOYER C H, HALLIWELL B. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 1976, 133(1): 21-25.
doi: 10.1007/BF00386001
pmid: 24425174
|
[18] |
WANG L, YAO L N, HAO X Y, LI N N, WANG Y C, DING C Q, LEI L, QIAN W J, ZENG J M, YANG Y J, WANG X C. Transcriptional and physiological analyses reveal the association of ROS metabolism with cold tolerance in tea plant. Environmental and Experimental Botany, 2019, 160: 45-58.
|
[19] |
张晓伟. IAA参与H2S诱导黄瓜耐冷性的机制[D]. 泰安: 山东农业大学, 2022.
|
|
ZHANG X W. IAA participating in the mechanism of chilling tolerance induced by H2S in cucumber[D]. Tai’an: Shandong Agricultural University, 2022. (in Chinese)
|
[20] |
陈奕吟, 陈玉珍. 低温锻炼对胡杨愈伤组织抗寒性、可溶性蛋白、脯氨酸含量及抗氧化酶活性的影响. 山东农业科学, 2007, 39(3): 46-49.
|
|
CHEN Y Y, CHEN Y Z. Cold acclimation-induced changes in freezing resistance, the contents of soluble protein and proline and antioxidant enzyme activities in Populus euphratica calli. Shandong Agricultural Sciences, 2007, 39(3): 46-49. (in Chinese)
|
[21] |
陈玉珍. 绵头雪莲花(Saussurea.laniceps hand.-Mazz.)组织培养及其抗寒性的生理生化基础研究[D]. 北京: 北京林业大学, 2005.
|
|
CHEN Y Z. Studies on tissue culture and physiological and biochemical basis of freezing tolerance in Saussurea.laniceps hand.-Mazz[D]. Beijing: Beijing Forestry University, 2005. (in Chinese)
|
[22] |
WANG X, LIU F L, JIANG D. Priming: A promising strategy for crop production in response to future climate. Journal of Integrative Agriculture, 2017, 16(12): 2709-2716.
doi: 10.1016/S2095-3119(17)61786-6
|
[23] |
BRUCE T J A, MATTHES M C, NAPIER J A, PICKETT J A. Stressful "memories" of plants: Evidence and possible mechanisms. Plant Science, 2007, 173(6): 603-608.
|
[24] |
LEUENDORF J E, FRANK M, SCHMÜLLING T. Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to cold stress. Scientific Reports, 2020, 10(1): 689.
|
[25] |
黎明艳. 西瓜细胞抗逆锻炼引发胁迫记忆形成的相关指标筛选[D]. 海口: 海南大学, 2022.
|
|
LI M Y. Screening of indexes related to stress memory formation induced by stress hardening in watermelon cells[D]. Haikou: Hainan University, 2022. (in Chinese)
|
[26] |
SHI Y T, DING Y L, YANG S H. Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant & Cell Physiology, 2015, 56(1): 7-15.
|
[27] |
WANG D Z, JIN Y N, DING X H, WANG W J, ZHAI S S, BAI L P, GUO Z F. Gene regulation and signal transduction in the ICE-CBF-COR signaling pathway during cold stress in plants. Biochemistry Biokhimiia, 2017, 82(10): 1103-1117.
|
[28] |
RITONGA F N, CHEN S. Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants, 2020, 9(5): 560.
|
[29] |
NOVILLO F, MEDINA J, SALINAS J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 In cold acclimation and define different gene classes in the CBF regulon. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(52): 21002-21007.
|
[30] |
花庆, 刘小刚, 张静雅, 田丰, 孙得壬, 郭蔼光, 徐虹. 小麦冷驯化相关基因及抗寒性分子机理研究进展. 中国农学通报, 2012, 28(36): 8-22.
|
|
HUA Q, LIU X G, ZHANG J Y, TIAN F, SUN D R, GUO A G, XU H. The cold acclimation associated genes and the molecular mechanism of cold resistance in wheat. Chinese Agricultural Science Bulletin, 2012, 28(36): 8-22. (in Chinese)
doi: 10.11924/j.issn.1000-6850.2012-1315
|
[31] |
栗振义, 龙瑞才, 张铁军, 杨青川, 康俊梅. 植物热激蛋白研究进展. 生物技术通报, 2016, 32(2): 7-13.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.02.003
|
|
LI Z Y, LONG R C, ZHANG T J, YANG Q C, KANG J M. Research progress on plant heat shock protein. Biotechnology Bulletin, 2016, 32(2): 7-13. (in Chinese)
|
[32] |
郭鹏, 隋娜, 于超, 郭尚敬, 董新纯, 孟庆伟. 转入甜椒热激蛋白基因CaHSP18提高番茄的耐冷性. 植物生理学通讯, 2008, 44(3): 409-412.
|
|
GUO P, SUI N, YU C, GUO S J, DONG X C, MENG Q W. CaHSP18 of sweet pepper enhanced chilling tolerance of transgenic tomato plants. Plant Physiology Communications, 2008, 44(3): 409-412. (in Chinese)
|