中国农业科学 ›› 2022, Vol. 55 ›› Issue (9): 1695-1709.doi: 10.3864/j.issn.0578-1752.2022.09.001
李周帅(),董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华*(),薛吉全*()
收稿日期:
2021-12-10
修回日期:
2022-02-08
出版日期:
2022-05-01
发布日期:
2022-05-19
通讯作者:
张兴华,薛吉全
作者简介:
李周帅,E-mail: 基金资助:
LI ZhouShuai(),DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua*(),XUE JiQuan*()
Received:
2021-12-10
Revised:
2022-02-08
Online:
2022-05-01
Published:
2022-05-19
Contact:
XingHua ZHANG,JiQuan XUE
摘要:
【目的】通过分析陕A群和陕B群选育自交系组配的杂交种产量,评估自交系的配合力,并开展以产量和配合力为目标性状的全基因组关联分析,挖掘产量及其配合力的关联位点,为陕A群和陕B群选育玉米自交系的改良及育种中的应用提供依据。【方法】基于NCⅡ遗传设计,以陕A群和陕B群选育的85份优良玉米自交系为亲本,构建包含246份F1的杂交种群体,在3个环境下进行产量测试,并评估产量的一般配合力和特殊配合力;利用6H90K芯片进行亲本基因型检测,获得63 879个高质量SNP标记,并进行群体遗传特征分析,在杂交种群体推测出高质量SNP标记55 951个,采用加性模型和非加性模型对杂交种产量、一般配合力和特殊配合力开展了全基因组关联分析,并基于B73参考基因组对显著关联SNPs内的基因进行挖掘和功能注释。【结果】3个环境下的产量表现符合正态分布且变异广泛,产量广义遗传力为59.04%,环境效应显著;杂交种产量、一般配合力和特殊配合力三者之间均达到极显著相关性,杂交种产量与特殊配合力的相关性(r=0.95)大于与一般配合力的相关性(r=0.62);陕A群与陕B群遗传特征具有一定差异,陕A群具有较高的一般配合力。全基因组关联分析分别检测到7、5和9个SNP与杂交种产量、一般配合力和特殊配合力显著相关(-log10(P)>3.86),其中4个SNP为杂交种产量和特殊配合力共定位,最终锚定了17个关联SNP。对不同性状关联位点的优势等位基因型分析发现,4个GCA关联SNP受加性效应控制,F1产量BLUE关联位点可分为4种表现形式,以显性效应为主,其杂合基因型为最优等位基因型或次优等位基因型。通过功能注释发现,候选基因在玉米生长发育和籽粒建成中特异表达,例如GRMZM2G165828、GRMZM2G057557均与玉米籽粒发育相关。【结论】一般配合力和特殊配合力共同影响杂交种的产量,特殊配合力效应影响更大;一般配合力和特殊配合力具有不同的遗传基础,可通过有利等位基因聚集提高一般配合力。在F1杂交种群体采用全基因组关联分析策略可开展配合力相关遗传解析,挖掘产量及其配合力相关遗传位点,可加速关联位点在分子育种中的应用。
李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709.
LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population[J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
表1
杂交种群体产量描述统计分析和方差分析"
环境 Env. | 重复 Rep. | 最小值 Minimum (kg·hm-2) | 最大值 Maximum (kg·hm-2) | 均值 Mean (kg·hm-2) | 标准差 SD | 偏度 Skewness | 峰度 Kurtosis | 变异系数 CV | 广义遗传力 H2(%) | F值 F value | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
基因型 Gen. | 环境 Env. | 基因×环境 Gen.×Env. | ||||||||||
杨凌 Yangling | 1 | 5095.60 | 12917.48 | 9527.95 | 1243.25 | -0.60 | 0.96 | 0.13 | 59.04 | 6.60** | 6318.72** | 3.89** |
2 | 4286.95 | 12709.47 | 9286.99 | 1437.99 | -0.64 | 0.63 | 0.15 | |||||
榆林 Yulin | 1 | 12325.73 | 20036.29 | 15794.53 | 1367.89 | 0.17 | 0.20 | 0.09 | ||||
2 | 12066.87 | 20488.13 | 15533.07 | 1441.90 | 0.20 | 0.36 | 0.09 | |||||
旬邑 Xunyi | 1 | 9401.12 | 20342.91 | 14038.85 | 1889.22 | 0.41 | 0.25 | 0.13 | ||||
2 | 10093.17 | 19664.45 | 14115.04 | 1783.91 | 0.26 | -0.04 | 0.13 | |||||
BLUE | 10775.45 | 17180.75 | 13831.91 | 988.61 | -0.28 | 0.59 | 0.07 |
表3
产量及其配合力显著关联的SNP信息"
性状 Trait | 标记名称 SNPs | 染色体 Chr. | 物理位置 Position (bp) | 基因型 Genotype | 最小等位基因频率 MAF | P值 P value | 表型解释率 PVE (%) |
---|---|---|---|---|---|---|---|
GCA | Affx-291398318 | 1 | 296696400 | A/G | 0.36 | 1.02E-04 | 23.37 |
GCA | Affx-291395842 | 2 | 228845613 | T/C | 0.22 | 1.13E-04 | 11.91 |
GCA | Affx-291375443 | 4 | 80111618 | G/A | 0.12 | 7.12E-05 | 12.29 |
GCA | Affx-291425877 | 4 | 155406944 | G/A | 0.29 | 2.77E-05 | 8.26 |
GCA | Affx-159192088 | 4 | 176561593 | C/A | 0.41 | 1.31E-04 | 7.97 |
F1_ADD | ●Affx-291424805 | 10 | 146974725 | T/C | 0.24 | 6.27E-05 | 1.55 |
F1_DOM | Affx-88979942 | 2 | 4377056 | G/A | 0.31 | 1.07E-04 | 1.75 |
F1_DOM | ■Affx-291385286 | 2 | 24634902 | T/G | 0.37 | 8.43E-05 | 4.12 |
F1_DOM | ▲Affx-88980445 | 2 | 28002879 | G/A | 0.42 | 1.36E-04 | 0.43 |
F1_DOM | Affx-158919359 | 4 | 153499376 | C/T | 0.08 | 9.46E-05 | 5.96 |
F1_DOM | Affx-291394192 | 10 | 146837618 | A/C | 0.43 | 8.24E-05 | 3.30 |
F1_DOM | ★Affx-291431456 | 10 | 4152732 | C/T | 0.47 | 3.52E-05 | 3.57 |
SCA_ADD | ●Affx-291424805 | 10 | 146974725 | T/C | 0.24 | 2.82E-05 | 1.77 |
SCA_DOM | Affx-291423507 | 1 | 8628332 | C/T | 0.44 | 3.13E-05 | 1.21 |
SCA_DOM | ■Affx-291385286 | 2 | 24634902 | T/G | 0.37 | 3.78E-05 | 3.26 |
SCA_DOM | ▲Affx-88980445 | 2 | 28002879 | G/A | 0.42 | 6.80E-06 | 1.22 |
SCA_DOM | Affx-291382512 | 2 | 194691551 | G/A | 0.49 | 9.30E-05 | 0.92 |
SCA_DOM | Affx-158945854 | 2 | 193402735 | A/C | 0.49 | 3.64E-05 | 1.76 |
SCA_DOM | Affx-291445414 | 7 | 805187 | G/C | 0.42 | 1.13E-04 | 1.42 |
SCA_DOM | Affx-291393021 | 10 | 1148101 | C/T | 0.31 | 1.06E-04 | 6.31 |
SCA_DOM | ★Affx-291431456 | 10 | 4152732 | C/T | 0.47 | 6.97E-05 | 3.15 |
表4
显著位点效应分析"
标记位点 SNP ID | 性状 Trait | 标记名称 SNPs | 染色体位置 Position (bp) | 基因型 Genotype | 不同性状下的有利等位基因 Favorable bases in different traits | 主效应模式 SNP effect | ||
---|---|---|---|---|---|---|---|---|
GCA | F1 | SCA | ||||||
SNP_1 | GCA | Affx-291398318 | Chr.1:296696400 | A/G | AA*** | AA*** | AA*** | A |
SNP_2 | GCA | Affx-291395842 | Chr.2:228845613 | T/C | CC** | CC** | CC** | A |
SNP_3 | GCA | Affx-291375443 | Chr.4:80111618 | G/A | GG** | \ | \ | \ |
SNP_4 | GCA | Affx-291425877 | Chr.4:155406944 | G/A | AA** | GA/GG | GA | A=D |
SNP_5 | GCA | Affx-159192088 | Chr.4:176561593 | C/A | CC | CC | CC | A |
SNP_6 | CO_ADD | Affx-291424805 | Chr.10:146974725 | T/C | CC*** | TC | TC* | D |
SNP_7 | CO_DOM | Affx-291431456 | Chr.10:4152732 | C/T | TT | TT/CC* | TT/CC* | A |
SNP_8 | CO_DOM | Affx-291385286 | Chr.2:24634902 | T/G | GG | TG* | TG** | D |
SNP_9 | CO_DOM | Affx-88980445 | Chr.2:28002879 | G/A | AA | GA* | GA* | D |
SNP_10 | F1BLUE | Affx-88979942 | Chr.2:4377056 | G/A | GG** | GG* | AA/GG | A |
SNP_11 | F1BLUE | Affx-158919359 | Chr.4:153499376 | C/T | CC** | CC*** | CC** | A |
SNP_12 | F1BLUE | Affx-291394192 | Chr.10:146837618 | A/C | CC* | AC** | AC* | D |
SNP_13 | SCA | Affx-291423507 | Chr.1:8628332 | C/T | TT* | CT | CT* | D |
SNP_14 | SCA | Affx-291382512 | Chr.2:194691551 | G/A | AA/GG | GA* | GA** | D |
SNP_15 | SCA | Affx-158945854 | Chr.2:193402735 | A/C | CC | AC* | AC** | D |
SNP_16 | SCA | Affx-291445414 | Chr.7:805187 | G/C | CC | GC* | GC** | D |
SNP_17 | SCA | Affx-291393021 | Chr.10:1148101 | C/T | CC | CC/CT*** | CC/CT*** | A=D |
表5
候选基因预测"
标记位点 SNP ID | 性状 Trait | SNPs位置 Position (bp) | 候选基因 Candidate genes | 功能注释 Annotation |
---|---|---|---|---|
SNP_1 | GCA | Chr.1:296696400 | AC206957.1_FG005 | 转座元件Transposable_element |
SNP_2 | GCA | Chr.2:228845613 | GRMZM2G559383 | - |
SNP_3 | GCA | Chr.4:80111618 | GRMZM2G175827(Zm00001d050350) | Kan3转录因子Kan3 transcription factor |
SNP_4 | GCA | Chr.4:155406944 | GRMZM2G137029(Zm00001d051447) | F-box蛋白PP2-A13 F-box protein PP2-A13 |
SNP_5 | GCA | Chr.4:176561593 | GRMZM2G097081(Zm00001d052102) | AP2-EREBP-转录因子57 AP2-EREBP-transcription factor 57(ereb57) |
SNP_6 | CO_ADD | Chr.10:146974725 | GRMZM2G149932(Zm00001d026580) | 外泌素家族蛋白 Exostosin family protein |
SNP_7 | CO_DOM | Chr.10:4152732 | GRMZM2G101928(Zm00001d023342) | - |
SNP_8 | CO_DOM | Chr.2:24634902 | GRMZM2G124371(Zm00001d002876) | 具有FYVE锌指结构域的染色体凝聚(RCC1)家族的调控因子 Regulator of chromosome condensation (RCC1) family with FYVE zinc finger domain |
SNP_9 | CO_DOM | Chr.2:28002879 | GRMZM2G133012(Zm00001d002980) | - |
SNP_10 | F1BLUE | Chr.2:4377056 | GRMZM2G363066(Zm00001d002013) | 水稻凝集素蛋白激酶家族蛋白同源基因 OsRLCK168, homologous gene of lectin protein kinase family protein |
SNP_11 | F1BLUE | Chr.4:153499376 | GRMZM2G101388 | 转座元件Transposable_element |
SNP_12 | F1BLUE | Chr.10:146837618 | GRMZM2G464157(Zm00001d026572) | 羧酯酶SOBER1 Carboxylesterase SOBER1 |
SNP_13 | SCA | Chr.1:8628332 | GRMZM2G474258(Zm00001d027598) | CCT结构域相关基因(cct101) CO CO-LIKE TIMING OF CAB1 protein domain101(cct101) |
SNP_14 | SCA | Chr.2:194691551 | GRMZM2G079109(Zm00001d006153) | 1-酰基甘油-3-磷酸O-酰基转移酶 1-acylglycerol-3-phosphate O-ac= yltransferase |
SNP_15 | SCA | Chr.2:193402735 | GRMZM2G378215 | - |
SNP_16 | SCA | Chr.7:805187 | GRMZM2G165828(Zm00001d018615) | 类似于谷氨酸受体3.4前体(配体门控离子通道3.4)(AtGLR 4) Similar to Glutamate receptor 3.4 precursor (Ligand-gated ion channel 3.4) (AtGLR4) |
SNP_17 | SCA | Chr.10:1148101 | GRMZM2G057557(Zm00001d023220) | 外膜OMP85家族蛋白 Outer membrane OMP85 family protein |
[1] | 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50(11): 1941-1959. |
LI S K, ZHANG J R, DONG S T, ZHAO M, LI C H, CUI Y H, LIU Y H, GAO J L, XUE J Q, WANG L C, WANG P, LU W P, WANG J H, YANG Q F, WANG Z M. Advances and prospects of maize cultivation in China. Scientia Agricultura Sinica, 2017, 50(11): 1941-1959. (in Chinese) | |
[2] | 李鹏, 白永新, 张润生, 魏振飞, 张建华. 浅议我国玉米育种发展现状与方向. 种子科技, 2019, 37(2): 18-19. |
LI P, BAI Y X, ZHANG R S, WEI Z F, ZHANG J H. Discussion on the development status and direction of maize breeding in China. Seed Science and Technology, 2019, 37(2): 18-19. (in Chinese) | |
[3] |
BIRCHLER J A, AUGER D L, RIDDLE N C. In search of the molecular basis of heterosis. The Plant Cell, 2003, 15(10): 2236-2239.
doi: 10.1105/tpc.151030 |
[4] | BIRCHLER J A, YAO H, CHUDALAYANDI S. Unraveling the genetic basis of hybrid vigor. Proceedings of the National Academy of Sciences of the USA, 2006, 103(35): 12957. |
[5] |
BIRCHLER J A, YAO H, CHUDALAYANDI S, VAIMAN D, VEITIA R A. Heterosis. The Plant Cell, 2010, 22(7): 2105-2112.
doi: 10.1105/tpc.110.076133 |
[6] | 堵纯信, 曹春景, 曹青, 毕蒙蒙, 董战鲲, 张发林. 玉米杂交种郑单958的选育与应用. 玉米科学, 2006(6): 43-45+49. |
DU C X, CAO C J, CAO Q, BI M M, DONG Z K, ZHANG F L. The breeding and application of maize hybrid Zhengdan 958. Journal of Maize Sciences, 2006(6): 43-45+49. (in Chinese) | |
[7] | 钏兴宽. 配合力理论及其在水稻育种中的应用. 种子, 2014, 33(6): 39-41+46. |
CHUAN X K. Combining ability theory and its application in rice breeding. Seed, 2014, 33(6): 39-41+46. (in Chinese) | |
[8] |
SPRAGUE G, TATUM L. General vs. specific combining ability in single crosses of corn. Agronomy Journal, 1942, 34: 923-932.
doi: 10.2134/agronj1942.00021962003400100008x |
[9] | 李明顺, 张世煌, 李新海, 潘光堂, 白丽, 彭泽斌. 根据产量特殊配合力分析玉米自交系杂种优势群. 中国农业科学, 2002, 35(6): 600-605. |
LI M S, ZHANG S H, LI X H, PAN G T, BAI L, PENG Z B. Study on heterotic groups among maize inbred lines based on SCA. Scientia Agricultura Sinica, 2002, 35(6): 600-605. (in Chinese) | |
[10] | 杨爱国, 张世煌, 李明顺, 荣廷昭, 潘光堂. CIMMYT和我国玉米种质群体的配合力及杂种优势分析. 作物学报, 2006, 32(9): 1329-1337. |
YANG A G, ZHANG S H, LI M S, RONG T Z, PAN G T. Combining ability and heterosis of 14 CIMMYT and 13 domestic maize populations in an NCⅡ mating design. Acta Agronomica Sinica, 2006, 32(9): 1329-1337. (in Chinese) | |
[11] |
GRIFFING B. Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Sciences, 1955, 9: 463-493.
doi: 10.1071/BI9560463 |
[12] |
LÜ A Z, ZHANG H, ZHANG Z X, TAO Y S, YUE B, ZHENG Y L. Conversion of the statistical combining ability into a genetic concept. Journal of Integrative Agriculture, 2012, 11(1): 43-52.
doi: 10.1016/S1671-2927(12)60781-0 |
[13] |
QI H, HUANG J, ZHENG Q, HUANG Y, SHAO R, ZHU L, ZHANG Z, QIU F, ZHOU G, ZHENG Y, YUE B. Identification of combining ability loci for five yield-related traits in maize using a set of testcrosses with introgression lines. Theoretical and Applied Genetics, 2013, 126(2): 369-377.
doi: 10.1007/s00122-012-1985-5 |
[14] |
WANG H, XU C, LIU X, GUO Z, XU X, WANG S, XIE C, LI W X, ZOU C, XU Y. Development of a multiple-hybrid population for genome-wide association studies: Theoretical consideration and genetic mapping of flowering traits in maize. Scientific Reports, 2017, 7(1): 40239.
doi: 10.1038/srep40239 |
[15] |
ZHOU Z, ZHANG C, LU X, WANG L, HAO Z, LI M, ZHANG D, YONG H, ZHU H, WENG J, LI X. Dissecting the genetic basis underlying combining ability of plant height related traits in maize. Frontiers in Plant Science, 2018, 9: 1117.
doi: 10.3389/fpls.2018.01117 |
[16] |
CHEN J, ZHOU H, XIE W, XIA D, GAO G, ZHANG Q, WANG G, LIAN X, XIAO J, HE Y Q. Genome-wide association analyses reveal the genetic basis of combining ability in rice. Plant Biotechnology Journal, 2019, 17(11): 2211-2222.
doi: 10.1111/pbi.13134 |
[17] |
XIAO Y, JIANG S, CHENG Q, WANG X, YAN J, ZHANG R, QIAO F, MA C, LUO J, LI W, LIU H, YANG W, SONG W, MENG Y, WARBURTON M, ZHAO J, WANG X, YAN J. The genetic mechanism of heterosis utilization in maize improvement. Genome Biology, 2021, 22(1): 148.
doi: 10.1186/s13059-021-02370-7 |
[18] |
HUANG X, YANG S, GONG J, ZHAO Q, FENG Q, ZHAN Q, ZHAO Y, LI W, CHENG B, XIA J, CHEN N, HUANG T, ZHANG L, FAN D, CHEN J, ZHOU C, LU Y, WENG Q, HAN B. Genomic architecture of heterosis for yield traits in rice. Nature, 2016, 537(7622): 629-633.
doi: 10.1038/nature19760 |
[19] |
WANG H, QIN F. Genome-wide association study reveals natural variations contributing to drought resistance in crops. Frontiers in Plant Science, 2017, 8: 1110.
doi: 10.3389/fpls.2017.01110 |
[20] |
LI H, PENG Z, YANG X, WANG W, FU J, WANG J, HAN Y, CHAI Y, GUO T, YANG N, LIU J, WARBURTON M L, CHENG Y, HAO X, ZHANG P, ZHAO J, LIU Y, WANG G, LI J, YAN J. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nature Genetics, 2013, 45(1): 43-50.
doi: 10.1038/ng.2484 |
[21] |
LI X, WANG M, ZHANG R, FANG H, FU X, YANG X, LI J. Genetic architecture of embryo size and related traits in maize. The Crop Journal, 2022, 10(1): 204-215.
doi: 10.1016/j.cj.2021.03.007 |
[22] |
CHEN Q, HAN Y, LIU H, WANG X, SUN J, ZHAO B, LI W, TIAN J, LIANG Y, YAN J, YANG X, TIAN F. Genome-wide association analyses reveal the importance of alternative splicing in diversifying gene function and regulating phenotypic variation in maize. The Plant Cell, 2018, 30(7): 1404-1423.
doi: 10.1105/tpc.18.00109 |
[23] |
LIU N, DU Y, WARBURTON M, XIAO Y, YAN J. Phenotypic plasticity contributes to maize adaptation and heterosis. Molecular Biology and Evolution, 2020, 38(4): 1262-1275.
doi: 10.1093/molbev/msaa283 |
[24] |
MENG L, LI H, ZHANG L, WANG J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 2015, 3(3): 269-283.
doi: 10.1016/j.cj.2015.01.001 |
[25] |
KNAPP S J, STROUP W W, ROSS W M. Exact confidence intervals for heritability on a progeny mean basis. Crop Science, 1985, 25(1): 192-194.
doi: 10.2135/cropsci1985.0011183X002500010046x |
[26] | Covarrubias-Pazaran G. Genome-assisted prediction of quantitative traits using the R package sommer. PLoS ONE, 2016: e0156744. |
[27] | 黄远樟, 刘来福. 作物数量遗传学基础: 六、配合力: 不完全双列杂交. 遗传, 1980(2): 43-46. |
HUANG Y Z, LIU L F. Basis of crop quantitative genetics: VI. Combining ability: Incomplete diallel hybridization. Genetics, 1980(2): 43-46. (in Chinese) | |
[28] |
MURRAY M G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8(19): 4321-4325.
doi: 10.1093/nar/8.19.4321 |
[29] |
DANECEK P, AUTON A, ABECASIS G, ALBERS C A, BANKS E, DEPRISTO M A, HANDSAKER R E, LUNTER G, MARTH G T, SHERRY S T, MCVEAN G, DURBIN R. 1000 genomes project analysis group. The variant call format and VCFtools. Bioinformatics (Oxford, England), 2011, 27(15): 2156-2158.
doi: 10.1093/bioinformatics/btr330 |
[30] |
AYRES D L, DARLING A, ZWICKL D J, BEERLI P, HOLDER M T, LEWIS P O, HUELSENBECK J P, RONQUIST F, SWOFFORD D L, CUMMINGS M P, RAMBAUT A, SUCHARD M A. BEAGLE: An application programming interface and high-performance computing library for statistical phylogenetics. Systematic Biology, 2012, 61(1): 170-173.
doi: 10.1093/sysbio/syr100 |
[31] |
KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.
doi: 10.1093/molbev/msy096 |
[32] | SAITOU N, NEI M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 1987, 4(4): 406-425. |
[33] |
LETUNIC I, BORK P. Interactive tree of life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics, 2007, 23(1): 127-128.
doi: 10.1093/bioinformatics/btl529 |
[34] |
YANG J, LEE S H, GODDARD M E, VISSCHER P M. GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 2011, 88(1): 76-82.
doi: 10.1016/j.ajhg.2010.11.011 |
[35] |
LIPKA A E, TIAN F, WANG Q, PEIFFER J, LI M, BRADBURY P J, GORE M A, BUCKLER E S, ZHANG Z. GAPIT: Genome association and prediction integrated tool. Bioinformatics (Oxford, England), 2012, 28(18): 2397-2399.
doi: 10.1093/bioinformatics/bts444 |
[36] | HUANG M, LIU X, ZHOU Y, SUMMERS R M, ZHANG Z. BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. Giga Science, 2019, 8(2): 154. |
[37] |
HUANG X, YANG S, GONG J, ZHAO Y, FENG Q, GONG H, LI W, ZHAN Q, CHENG B, XIA J, CHEN N, HAO Z, LIU K, ZHU C, HUANG T, ZHAO Q, ZHANG L, FAN D, ZHOU C, LU Y, WENG Q, WANG Z X, LI J, HAN B. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nature Communications, 2015, 6(1): 6258.
doi: 10.1038/ncomms7258 |
[38] |
GAO X, STARMER J, MARTIN E R. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genetic Epidemiology, 2008, 32(4): 361-369.
doi: 10.1002/gepi.20310 |
[39] |
ZHOU H, XIA D, ZENG J, JIANG G, HE Y. Dissecting combining ability effect in a rice NCII-III population provides insights into heterosis in indica-japonica cross. Rice, 2017, 10(1): 39.
doi: 10.1186/s12284-017-0179-9 |
[40] | SHULL G H. The composition of a field of maize. Journal of Heredity, 1908, 4(1): 296-301. |
[41] | 梁文科, 张世煌, 戚廷香, 邱法展, 庹洪章, 刘永忠, 郑用琏, 徐尚忠. 热带温带玉米群体产量性状遗传力及遗传方差分量的剖析. 中国农业科学, 2006, 39(11): 2178-2185. |
LIANG W K, ZHANG S H, QI T X, QIU F Z, TUO H Z, LIU Y Z, ZHENG Y L, XU S Z. Dissection of heritability and genetic variance components for yield traits in tropical and temperate maize populations. Scientia Agricultura Sinica, 2006, 39(11): 2178-2185. (in Chinese) | |
[42] |
MAKUMBI D, BETRÁN J F, BÄNZIGER M, RIBAUT J M. Combining ability, heterosis and genetic diversity in tropical maize (Zea mays L.) under stress and non-stress conditions. Euphytica, 2011, 180(2): 143-162.
doi: 10.1007/s10681-010-0334-5 |
[43] | ZHANG X, LV L, LV C, GUO B, XU R. Combining ability of different agronomic traits and yield components in hybrid barley. PLoS ONE, 2015: e0126828. |
[44] | 倪先林, 张涛, 蒋开锋, 杨莉, 杨乾华, 曹应江, 文春阳, 郑家奎. 杂交稻特殊配合力与杂种优势、亲本间遗传距离的相关性. 遗传, 2009, 31(8): 849-854. |
NI X L, ZHANG T, JIANG K F, YANG L, YANG Q H, CAO Y J, WEN C Y, ZHENG J K. Correlations between specific combining ability, heterosis and genetic distance in hybrid rice. Genetics, 2009, 31(8): 849-854. (in Chinese) | |
[45] |
JIANG Y, SCHMIDT R H, ZHAO Y, REIF J C. A quantitative genetic framework highlights the role of epistatic effects for grain- yield heterosis in bread wheat. Nature Genetics, 2017, 49(12): 1741-1746.
doi: 10.1038/ng.3974 |
[46] |
ROMERO N J A, WILLCOX M, BURGUEÑO J, ROMAY C, SWARTS K, TRACHSEL S, PRECIADO E, TERRON A, DELGADO H V, VIDAL V, ORTEGA A, BANDA A E, MONTIEL N O G, ORTIZ-MONASTERIO I, VICENTE F S, ESPINOZA A G, ATLIN G, WENZL P, HEARNE S, BUCKLER E S. A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nature Genetics, 2017, 49(3): 476-480.
doi: 10.1038/ng.3784 |
[47] |
ESHED Y, BAUM S F, PEREA J V, BOWMAN J L. Establishment of polarity in lateral organs of plants. Current Biology, 2001, 11(16): 1251-1260.
doi: 10.1016/S0960-9822(01)00392-X |
[48] |
ESHED Y, IZHAKI A, BAUM S F, FLOYD S K, BOWMAN J L. Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development, 2004, 131(12): 2997-3006.
doi: 10.1242/dev.01186 |
[49] |
HOOPES G M, HAMILTON J P, WOOD J C, ESTEBAN E, PASHA A, VAILLANCOURT B, PROVART N J, BUELL C R. An updated gene atlas for maize reveals organ-specific and stress-induced genes. The Plant Journal, 2019, 97(6): 1154-1167.
doi: 10.1111/tpj.14184 |
[50] | STELPFLUG S C, SEKHON R S, VAILLANCOURT B, HIRSCH C N, BUELL C R, DE LEON N, KAEPPLER S M. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. Plant Genome, 2016, 9(1): 38-54. |
[51] |
WU X, LI Y, SHI Y, SONG Y, ZHANG D, LI C, BUCKLER E S, LI Y, ZHANG Z, WANG T. Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Plant Biotechnology Journal, 2016, 14(7): 1551-1562.
doi: 10.1111/pbi.12519 |
[52] |
PEIFFER J A, ROMAY M C, GORE M A, FLINT-GARCIA S A, ZHANG Z, MILLARD M J, GARDNER C A, MCMULLEN M D, HOLLAND J B, BRADBURY P J, BUCKLER E S. The genetic architecture of maize height. Genetics, 2014, 196(4): 1337-1356.
doi: 10.1534/genetics.113.159152 |
[53] |
PEIFFER J A, FLINT-GARCIA S A, DE LEON N, MCMULLEN M D, KAEPPLER S M, BUCKLER E S. The genetic architecture of maize stalk strength. PLoS ONE, 2013, 8(6): e67066.
doi: 10.1371/journal.pone.0067066 |
[54] | WANG Q J, YUAN Y, LIAO Z, JIANG Y, WANG Q, ZHANG L, GAO S, WU F, LI M, XIE W, LIU T, XU J, LIU Y, FENG X, LU Y. Genome-wide association study of 13 traits in maize seedlings under low phosphorus stress. Plant Genome, 2019, 12(3): 1-13. |
[55] |
DONG M Y, LEI L, FAN X W, LI Y Z. Analyses of open-access multi-omics data sets reveal genetic and expression characteristics of maize ZmCCT family genes. AoB Plants, 2021, 13(5): plab048.
doi: 10.1093/aobpla/plab048 |
[56] |
ZHU X M, SHAO X Y, PEI Y H, GUO X M, LI J, SONG X Y, ZHAO M A. Genetic diversity and genome-wide association study of major ear quantitative traits using high-density SNPs in maize. Front Plant Science, 2018, 9: 966.
doi: 10.3389/fpls.2018.00966 |
[1] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[2] | 柴海燕,贾娇,白雪,孟玲敏,张伟,金嵘,吴宏斌,苏前富. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性[J]. 中国农业科学, 2023, 56(1): 64-78. |
[3] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[4] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[5] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[6] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[7] | 张家桦,杨恒山,张玉芹,李从锋,张瑞富,邰继承,周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332-1345. |
[8] | 职蕾,者理,孙楠楠,杨阳,Dauren Serikbay,贾汉忠,胡银岗,陈亮. 小麦苗期铅耐受性的全基因组关联分析[J]. 中国农业科学, 2022, 55(6): 1064-1081. |
[9] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
[10] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
[11] | 刘苗,刘朋召,师祖姣,王小利,王瑞,李军. 氮磷配施下夏玉米临界氮浓度稀释曲线的构建与氮营养诊断[J]. 中国农业科学, 2022, 55(5): 932-947. |
[12] | 乔远,杨欢,雒金麟,汪思娴,梁蓝月,陈新平,张务帅. 西北地区玉米生产投入及生态环境风险评价[J]. 中国农业科学, 2022, 55(5): 962-976. |
[13] | 黄兆福, 李璐璐, 侯梁宇, 高尚, 明博, 谢瑞芝, 侯鹏, 王克如, 薛军, 李少昆. 不同种植区玉米生理成熟后田间站秆脱水的积温需求[J]. 中国农业科学, 2022, 55(4): 680-691. |
[14] | 石习, 宁丽华, 葛敏, 邬奇, 赵涵. 玉米氮状况相关生物标记物的筛选和应用[J]. 中国农业科学, 2022, 55(3): 438-450. |
[15] | 张建军, 党翼, 赵刚, 王磊, 樊廷录, 李尚中. 覆膜时期和施氮量对陇东旱塬玉米产量和水氮利用效率的影响[J]. 中国农业科学, 2022, 55(3): 479-490. |
|