中国农业科学 ›› 2022, Vol. 55 ›› Issue (6): 1213-1226.doi: 10.3864/j.issn.0578-1752.2022.06.013
收稿日期:
2021-06-24
接受日期:
2021-12-17
出版日期:
2022-03-16
发布日期:
2022-03-25
通讯作者:
曹文明
作者简介:
杨虹,Tel:18918156745;Fax:021-58487667;E-mail:
YANG Hong(),CAO WenMing(
),CHEN HeYan,WEI XueQing,SHU LiDan,LI Tong
Received:
2021-06-24
Accepted:
2021-12-17
Online:
2022-03-16
Published:
2022-03-25
Contact:
WenMing CAO
摘要:
修饰型真菌毒素是重要的食品安全危害因子。通过综述修饰型真菌毒素的形成机制、种类、污染水平、毒理研究、代谢规律、分析检测、脱毒方法等方面的进展,识别已知风险、潜在风险以及分析风险防控措施。已知风险包括:谷物及制品中修饰型真菌毒素的阳性检出率高,浓度跨度大,其存在会增加人群真菌毒素膳食暴露的风险。毒理学研究表明,有的修饰型真菌毒素在体内代谢转化为原型而产生与原型同等毒性,有的本身则具有毒性。潜在风险包括:代谢转化而成的多种修饰型真菌毒素共存时会引起毒性机制和毒性作用不明。在农作物代谢或食品加工中也可产生结构、性质、毒性均未知的修饰型真菌毒素。受分析技术和质量控制手段的制约,难以获得其准确可靠的定性定量结果,使毒理学数据十分匮乏,导致毒理学性质引起争议。风险防控措施包括:从源头抓起,培育抗病品种,规范标准体系和检测体系,严把农产品收购、储藏、生产及产品加工关。另外,在生产加工环节中,要加强产后脱毒技术的研究。
杨虹,曹文明,陈何妍,卫学青,束莉丹,李彤. 谷物及制品中修饰型真菌毒素的风险与防控[J]. 中国农业科学, 2022, 55(6): 1213-1226.
YANG Hong,CAO WenMing,CHEN HeYan,WEI XueQing,SHU LiDan,LI Tong. Risks and Their Prevention and Control of Modified Mycotoxins in Grain and Its Products[J]. Scientia Agricultura Sinica, 2022, 55(6): 1213-1226.
表1
谷物及制品中主要的修饰型真菌毒素分布概况"
类别 Type | 种类1) Classification | 检出率 Positive rate (the range of mean, %) | 浓度Concentration (the range of mean, μg∙kg-1) | 修饰型/原型 (均值) Modified/free ratio (mean) | 样本量 Sample size | 基质2) Matrix | 国家3) Country | 文献 Reference |
---|---|---|---|---|---|---|---|---|
单端孢霉烯族Trichothecene | DON-3-Glc | 6.3—100 | 5.5—1080 | 0.01—16 | 2151 | 1—7,8 | 1—12 | [29-31,33-38,40-45] |
3-AcDON | 3.3—100 | 2.1—341 | 0.01—4.7 | 1642 | 1—4,8 | 1—3,7—9 | [29-31,37-38,41-42] | |
15-AcDON | 4.2—100 | 2.4—334 | 0—2.8 | 1547 | 1—3,8 | 1—3,7—8 | [29,31,37-38,42] | |
NIV-3-Glc | 0.08—100 | 13—1042 | 0.18—0.41 | 200 | 1,3—7,8 | 4,9,12 | [30,33,43] | |
HT2-3-Glc | 41—58 | 5.4—41 | 0.26—3.3 | 95 | 1,3—4 | 9 | [30] | |
小计 Sub-total | 11—92 | 5.7—568 | 0.1—5.4 | 2151 | 7种谷物11种制品 7 grain and 11 grain products | 12 | ||
玉米赤霉 烯酮类 Zearalenone | α-ZEL | 2.9—100 | 0.6—97 | 0—4.4 | 299 | 1—4,8 | 7,9 | [30,37,42] |
β-ZEL | 2.9—83 | 2—49 | 0—3.5 | [30,37,42] | ||||
α-ZEL-14-Glc | 0.03—24 | 3.1—283 | 0—2.7 | [30,37,42] | ||||
β-ZEL-14-Glc | 0.01—50 | 0.1—152 | 0—1.8 | [30,37,42] | ||||
ZEN-14-Glc | 3.2—50 | 0.15—174 | 0—4.6 | 323 | [30,37,39,42] | |||
ZEN-14-sulfate | 8.8—53 | 4.9—51 | 0—0.86 | 383 | 1,7,9,11 | [30,37,41-42] | ||
ZEN-16-Glc | 6.7—58 | 0.45—4.2 | 0.03—0.06 | 95 | 1,3—4 | 9 | [30] | |
小计 Sub-total | 3.5—60 | 1.6—116 | 0—2.6 | 407 | 4种谷物9种制品 4 grain and 9 grain proproducts | 4 |
表2
谷物及制品中常见真菌毒素的毒性及欧洲人群的慢性膳食暴露量"
真菌毒素 Mycotoxin | IARC分类 IARC classification | 每日耐受摄入量TDI Tolerable daily intake (ng·kg-1 body weight·day-1) | 毒性与危害 Toxicity and hazard | 慢性膳食暴露平均消费者 Chronic dietary exposure at the mean percentile (ng·kg-1 body weight·day-1) | 慢性膳食暴露 高消费者(P95) Chronic dietary exposure at the 95th percentile (ng·kg-1 body weight·day-1) | 参考文献 Reference | ||
---|---|---|---|---|---|---|---|---|
幼儿 Toddlers | 成人 Adults | 幼儿 Toddles | 成人 Adults | |||||
DON 3-AcDON 15-AcDON DON-3-Glc | Group 3 | DON+3-AcDON+15- AcDON+DON-3-Glc= 1000 | 引发呕吐、腹痛、腹泻、发烧以及内毒素血症等极性中毒症状;引起食欲减退、消化不良等慢性中毒症状,高剂量摄入会导致休克甚至死亡。具有细胞毒性、基因毒性、免疫毒性和致癌性,与人类大骨节病、克山病的发生有关 It triggers some polar poisoning symptoms such as vomiting, bellyache, diarrhea, fever and indotoxemia; It can cause some chronic poisoning symptoms such as decreasing appetite, indigestion and so on. High intake of it can lead to shock or even death. It has cytotoxin, genotoxin, immunotoxicity and carcinogenicity, relating to the occurrence of Kaschin-Beck disease and Keshan disease | 600—1700 | 300—700 | 1100—2700 | 500—1400 | [1,49-50] |
T-2 HT-2 | Group 3 | T-2+HT-2=100 | 危害造血组织和免疫器官,引发出血性综合征,白细胞减少,贫血,胃肠道功能受损等 Endanger hemopoietic system and immune organs, causing hemorrhagic bowel syndrome, leukopenia, anemia, impaired the function of gastrointestinal tract, etc. | 12—43 | 3.4—18 | 23—91 | 7.2—39 | |
NIV | Group 3 | NIV=1200 | 急性毒性较脱氧雪腐镰刀菌烯醇强,具有较强的细胞毒性,抑制免疫系统,造成血清总蛋白下降,碱性磷酸酶、谷草转氨酶活性升高等,并具有胚胎毒性作用 Acute toxicity of it is stronger than that of DON. It has quite strong cytotoxin to suppress immune system, causing decreasing of total serum protein and increasing of the enzyme activity of alkaline phosphatase and glutamic oxalacetic transaminase. It also has embryotoxicity | 4.3—202 | 0.4—75 | 12—484 | 1.1—224 | |
ZEN | Group 3 | ZEN=250 | 生殖毒性、肾脏毒性、免疫毒性、肝脏毒性和诱发肿瘤的形成 It has reproduction toxicity, nephrotoxicity, immunotoxicity, liver toxicity. It induces the formation of tumor | 93—100 | 2.4—29 | 24—277 | 4.7—54 | |
FB1 FB2 FB3 | Group 2B | FB1+FB2+FB3=2000 | 可致大脑白质软化症,神经性中毒而表现意识障碍、失明和运动失调等症状,严重者甚至造成死亡。对猪造成肺水肿综合征,并能造成肝脏和食道损伤。引起灵长类动物的动脉粥样硬化样改变,诱发大鼠肝癌,与人类食道癌的发生密切相关 It causes leukomalacia and neurotoxicity to exhibit some symptoms including disturbance of consciousness, blindness and ataxia, and even death. For pig, it can give rise to edema syndrome and impair liver and esophagus. It triggers the change of atherosclerosis of quadrumane, inducing rat hepatocarcinoma, having a close relation to the occurrence of human esophageal cancer | 180—1650 | 50—650 | 580—3260 | 90—1250 |
表3
脱氧雪腐镰刀烯醇修饰型、玉米赤霉烯酮修饰型和伏马毒素修饰型的数量、潜在毒性及涉及反应类型"
类型 Type | 数量(个)Number | 分析方法(个) Analytical method | 举例 Example | 毒性情况 Toxicity | 反应类型 Reaction type | 文献 References |
---|---|---|---|---|---|---|
Modified DON | 44 | 3 | DON-3-Glc | 毒性与DON相当 Equivalent toxicity of DON | 糖苷化 Glycosylation | [54] |
DON-diGlc | 未报道, 因结合寡糖,极性增强,更易排出体外 Unreported. The combination with oligose increased DON-diGlc polarity, made it more easier being eliminated from body | 糖苷化 Glycosylation | - | |||
DON-3-GlcA | 可能低毒,随尿液排毒 Maybe low toxicity, excreted in urine | 糖酸化Glucuronidation | [32] | |||
DON-15-sulfate | 低毒,植物核糖体活性中度抑制剂 Low toxicity, DON-15-sulfate is considered as a moderate inhibitor of plant ribosome activity | 磺化 Sulfonation | [32] | |||
DON-glutathione | 可能低毒。谷胱甘肽本身能帮助保持正常的免疫系统功能,并具有抗氧化和整合解毒的作用 Maybe low toxicity. Glutathione is beneficial to retain the immune system functioning normally and has effect of anti-oxidation and integrated detoxification | 硫化 Sulfuration | [32] | |||
3-AcDON | 毒性与DON相当 Equivalent toxicity of DON | 乙酰化 Acetylation | [32] | |||
norDON A | 无毒 Nontoxicity | 热降解 Thermal degradation | [6] | |||
DOMs | 可能低毒,C12-C13 位环氧键被破坏,随尿液排毒 Maybe low toxicity, the epoxy bond of C12-C13 of mother nucleus is damaged, excreted from body in urine | 去环氧化 De-epoxidation | [32,57] | |||
3-epimer-DON | 可能低毒,体内和体外实验研究表明毒性比DON低 Maybe low toxicity, the results of vivo- and vitro- experiments demonstrated 3-epimer-DON toxicity is lower than DON | 异构化 Isomerization | [57-59] | |||
Modified ZEN | 43 | 2 | α-ZEL | 可能有毒,其与雌激素受体结合能力比ZEN强9—2200多倍 Likely to be toxic, its capacity of combining with oestrogen receptors are 9-2200 times stronger than ZEN | 还原化 Reduction | [27] |
ZEN-14-Glc | 可能有毒。猪口服方式给药时,主要转化为ZEN和α-ZEL Likely to be toxic. After oral administration in pig, ZEN-14-Glc mainly transforms into ZEN and α-ZEL | 糖苷化 Glycosylation | [22,32] | |||
ZEN-14-GlcA | 可能低毒,随尿液排毒 Maybe low toxicity, excreted in urine | 糖酸化 Glucuronidation | [22] | |||
ZEN-14-sulfate | 可能有毒。 猪口服给药时,转化为ZEN、ZEN-14-GlcA和其他代谢物 Likely to be toxic. After oral administration in pig, ZEN-14-sulfate mainly transforms into ZEN, ZEN-14-GlcA and other metabolites | 磺化 Sulfonation | [22,32] | |||
Modified FB | 15 | 0 | HFB1 | 可能低毒,老鼠喂养试验中,有肝、肾毒性,抑制神经酰胺合成酶 Maybe low toxicity. In rat trials, HFB1 exhibits liver toxicity, nephrotoxicity, and suppression of ceramide synthetase | 水解 Hydrolyzation | [11] |
N-fatty-acyl-FB1 | 可能有毒,通过细胞实验,毒性比HFB1强,约是FB1的10倍 Maybe low toxicity. Through cell experiment, N-fatty-acyl-FB1 toxicity is stronger than HFB1, and is almost ten times stronger than FB1 | 酰化 Acylation | [28,32] | |||
EFB1 palmitic acid | 未明确,极性比FBs更弱,毒性不同于FBs Undetermined. EFB1 palmitic acid polarity is much weaker than FBs, and its toxicity is different from FBs | 酯化 Esterification | [14,32] |
表4
玉米赤霉烯酮和伏马毒素修饰型在谷物及制品中的污染情况"
类型 Type | 基质 Matrix | 修饰型真菌毒素 Modified mycotoxin | 数量 Number (positive) | 与原型的含量百分比 Modified/Free ratio | 文献 Reference |
---|---|---|---|---|---|
谷物原料 Grain raw material | 玉米 Corn | ZEN-14-sulfate | 41 | 高达30% UP to 30% | [1] |
小麦 Wheat | ZEN-14-Glc | 10 | 高达30% UP to 30% | ||
玉米Corn | Physical emtrapped fumonisins | 31 | 高达100% UP to 100% | ||
Physical emtrapped fumonisins | 97 | 高达60% UP to 60% | |||
Physical emtrapped fumonisins | 120 | 高达60% UP to 60% | |||
谷物食品 Grain products | 高纤维面包 Fiber enriched bread | ZEL, ZEN-14-Glc, ZEN-14-sulfate, | 52 | 总和,高达100% As the sum, up to 100% | |
α-ZEL-14Glc, β-ZEL-14-Glc | |||||
谷物早餐 Breakfast cereals | ZEL, ZEN-14-Glc, ZEN-14-sulfate, | 62 | 总和,高达110% As the sum, up to 110% | ||
α-ZEL-14-Glc, β-ZEL-14-Glc | |||||
燕麦片 Oatmeal | ZEL, ZEN-14-Glc, ZEN-14-Sulfate, | 13 | 总和,高达100% As the sum, up to 100% | ||
α-ZEL14Glc, β-ZEL-14-Glc | |||||
玉米片 Corn flakes | Physical emtrapped fumonisins | 4 | 高达100% UP to 100% | ||
无麸质产品 Gluten-free products | Physical emtrapped fumonisins | 21 | 高达100% UP to 100% |
[1] | European Food Safety Authority. Scientific Opinion on the risks for human and animal health related to the presence of modified forms of certain mycotoxins in food and feed. EFSA Journal, 2014,12(12):3916. |
[2] |
LU Q, QIN J A, FU Y W, LUO J Y, LU J H, LOGRIECO A F, YANG M H. Modified mycotoxins in foodstuffs, animal feed, and herbal medicine: A systematic review on global occurrence, transformation mechanism and analysis methods. Trends in Analytical Chemistry, 2020,133:116088.
doi: 10.1016/j.trac.2020.116088 |
[3] |
NATHANAIL A V, VARGA E, MENG-REITERE J, BUESCHL C, MICHLMAYR H, MALACHOVA A, FRUHMANN P, JESTOI M, PELTONEN K, ADAM G, LEMMENS M, SCHUHMACHER R, BERTHILLER F. Metabolism of the fusarium mycotoxins T-2 toxin and HT-2 toxin in wheat. Journal of Agricultural and Food Chemistry, 2015,63:7862-7872.
doi: 10.1021/acs.jafc.5b02697 |
[4] |
MCCORMICK S P, KATO T, MARAGOS C M, BUSMAN M, LATTANZIO V M T, GALAVERNA G, DALL-ASTA C, CRICH D, PRICE N P J, KURTZMAN C P. Anomericity of T-2 toxin-glucoside: Masked mycotoxin in cereal crops. Journal of Agricultural and Food Chemistry, 2015,63:731-738.
doi: 10.1021/jf504737f |
[5] | BRETZ M, KNECHT A, GӦCKLER S, HUMPF H U. Structural elucidation and analysis of thermal degradation products of the Fusarium mycotoxin nivalenol. Molecular Nutrition & Food Research, 2005,49:309-316. |
[6] |
BRETZ M, BEYER M, CRAMER B, KNECHT A, HUMPF H U. Thermal degradation of the Fusarium mycotoxin deoxynivalenol. Journal of Agricultural and Food Chemistry, 2006,54(17):6445-6451. doi: 10.1021/jf061008g.
doi: 10.1021/jf061008g |
[7] |
ZACHARIASOVA M, VACLAVIKOVA M, LACINA O, VACLAVIK L, HAJSLOVA J. Deoxynivalenol oligoglycosides: New “masked” fusarium toxins occurring in malt, beer, and breadstuff. Journal of Agricultural and Food Chemistry, 2012,60(36):9280-9291. doi: 10.1021/jf302069z.
doi: 10.1021/jf302069z |
[8] |
WARTH B, FRUHMANN P, WIESENBERGER G, KLUGER B, SARKANJ B, LEMMENS M, HAMETNER C, FRÖHLICH J, ADAM G, KRSKA R, SCHUHMACHER R. Deoxynivalenol-sulfates: Identification and quantification of novel conjugated (masked) mycotoxins in wheat. Analytical and Bioanalytical Chemistry, 2015,407(4):1033-1039.
doi: 10.1007/s00216-014-8340-4 |
[9] | European Food Safety Authority. Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA Journal, 2017,15(7):4851. |
[10] |
BERTHILLER F, WERNER U, SULYOK M, KRSKA R, HAUSER M T, SCHUHMACHER R. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin Zearalenone in the model plant Arabidopsis thaliana. Food Additives & Contaminants, 2006,23(11):1194-1200. doi: 10.1080/02652030600778728.
doi: 10.1080/02652030600778728 |
[11] |
HUMPF H U, VOSS K A. Effects of thermal food processing on the chemical structure and toxicity of fumonisin mycotoxins. Molecular Nutrition & Food Research, 2004,48(4):255-269. doi: 10.1002/mnfr.200400033.
doi: 10.1002/mnfr.200400033 |
[12] |
KIM E K, SCOTT P M, LAU B P Y. Hidden fumonisins in corn flakes. Food Additives and Contaminants, 2003,20:161-169.
doi: 10.1080/0265203021000035362 |
[13] |
SEEFELDER W, KNECHT A, HUMPF H U. Bound fumonisin B1: Analysis of fumonisin-B1 glyco and amino acid conjugates by liquid Chromatography-Electrospray Ionization-Tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 2003,51(18):5567-5573. doi: 10.1021/jf0344338.
doi: 10.1021/jf0344338 |
[14] | BARTÓK T, TÖLGYESI L, MESTERHáZY Á, BARTOK M, SZECSI A. Identification of the first fumonisin mycotoxins with three acyl groups by ESI-ITMS and ESI-TOFMS following RP-HPLC separation: palmitoyl, linoleoyl and oleoyl EFB1 fumonisin isomers from a solid culture of Fusarium verticillioides. Food Additives and Contaminants, 2010,27(12):1714-1723. |
[15] |
PARK J W, SCOTT P M, LAU B P Y, LEWIS D A. Analysis of heat-processed corn foods for fumonisins and bound fumonisins. Food Additives & Contaminants, 2004,21(12):1168-1178. doi: 10.1080/02652030400021873.
doi: 10.1080/02652030400021873 |
[16] |
DALL’ASTA C, MANGIA M, BERTHILLER F, MOLINELLI A, SULYOK M, SCHUHMACHER R, KRSKA R, GALAVERNA G, DOSSENA A, MARCHELLI R. Difficulties in fumonisin determination: the issue of hidden fumonisins. Analytical and Bioanalytical Chemistry, 2009,395(5):1335-1345. doi: 10.1007/s00216-009-2933-3.
doi: 10.1007/s00216-009-2933-3 |
[17] | JECFA. Evaluation of certain contaminants in food. 72nd Report of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO Technical Report Series, 2011,959:1-115. |
[18] |
EFSA PANEL ON CONTAMINANTS IN THE FOOD CHAIN (CONTAM), KNUTSEN H K, ALEXANDER J, BARREGÅRD L, BIGNAMI M, BRÜSCHWEILER B, CECCATELLI S, COTTRILL B, DINOVI M, GRASL-KRAUPP B, HOGSTRAND C, HOOGENBOOM L R, NEBBIA C S, OSWALD I P, PETERSEN A, ROSE M, ROUDOT A C, SCHWERDTLE T, VLEMINCKX C, VOLLMER G, WALLACE H, DE SAEGER S, ERIKSEN G S, FARMER P, FREMY J M, GONG Y Y, MEYER K, NAEGELI H, PARENT-MASSIN D, RIETJENS I, VAN EGMOND H, ALTIERI A, ESKOLA M, GERGELOVA P, RAMOS BORDAJANDI L, BENKOVA B, DÖRR B, GKRILLAS A, GUSTAVSSON N, VAN MANEN M, EDLER L. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA Journal European Food Safety Authority, 2017,15(9):e04718. doi: 10.2903/j.efsa.2017.4718.
doi: 10.2903/j.efsa.2017.4718 |
[19] |
NAGL V, WOECHTL B, SCHWARTZ-ZIMMERMANN H E, HENNIG-PAUKA I, MOLL W D, ADAM G, BERTHILLER F. Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in pigs. Toxicology Letters, 2014,229(1):190-197. doi: 10.1016/j.toxlet.2014.06.032.
doi: 10.1016/j.toxlet.2014.06.032 |
[20] | GRATZ S W, DINESH R, YOSHINARI T, HOLTROP G, RICHARDSON A J, DUNCAN G, MACDONALD S, LIOYD A, TARBIN J. Masked trichothecene and zearalenone mycotoxins withstand digestion and absorption in the upper GI tract but are efficiently hydrolyzed by human gut microbiota in vitro. Molecular Nutrition & Food Research, 2017,61(4):1600680. |
[21] |
VIDAL A, CLAEYS L, MENGELERS M, VANHOORNE V, VERVAET C, HUYBRECHTS B, DE SAEGER S, DE BOEVRE M. Humans significantly metabolize and excrete the mycotoxin deoxynivalenol and its modified form deoxynivalenol-3-glucoside within 24 hours. Scientific Reports, 2018,8(1):5255. doi: 10.1038/s41598-018-23526-9.
doi: 10.1038/s41598-018-23526-9 |
[22] |
BINDER S B, SCHWARTZ-ZIMMERMANN H E, VARGA E, BICHL G, MICHLMAYR H, ADAM G, BERTHILLER F. Metabolism of zearalenone and its major modified forms in pigs. Toxins, 2017,9(2):56.
doi: 10.3390/toxins9020056 |
[23] |
DELLAFIORA L, GALAVERNA G, RIGHI F, COZZINI P, DALL'ASTA C. Assessing the hydrolytic fate of the masked mycotoxin Zearalenone-14-glucoside - A warning light for the need to look at the “maskedome”. Food and Chemical Toxicology, 2017,99:9-16. doi: 10.1016/j.fct.2016.11.013.
doi: 10.1016/j.fct.2016.11.013 |
[24] | 赵琼晖, 袁梓洢, 王宏菊, 张建莹. 食品中修饰型真菌毒素及其同时检测方法研究进展. 食品工业科技, 2020,41(2):336-344. |
ZHAO Q H, YUAN Z Y, WANG H J, ZHANG J Y. Progress on the modified mycotoxins and their simultaneous determination methods in food. Science and Technology of Food Industry, 2020,41(2):336-344. (in Chinese) | |
[25] |
KOVALSKY P, KOS G, NÄHRER K, SCHWAB C, JENKINS T, SCHATZMAYR G, SULYOK M, KRSKA R. Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize-an extensive survey. Toxins, 2016,8(12):363.
doi: 10.3390/toxins8120363 |
[26] |
LORENZ N, DÄNICKE S, EDLER L, GOTTSCHALK C, LASSEK E, MARKO D, RYCHLIK M, MALLY A. A critical evaluation of health risk assessment of modified mycotoxins with a special focus on Zearalenone. Mycotoxin Research, 2019,35(1):27-46. doi: 10.1007/s12550-018-0328-z.
doi: 10.1007/s12550-018-0328-z |
[27] |
STEINKELLNER H, BINAGLIA M, DALL'ASTA C, GUTLEB A C, METZLER M, OSWALD I P, PARENT-MASSIN D, ALEXANDER J. Combined hazard assessment of mycotoxins and their modified forms applying relative potency factors: Zearalenone and T2/HT2 toxin. Food and Chemical Toxicology, 2019,131:110599. doi: 10.1016/j.fct.2019.110599.
doi: 10.1016/j.fct.2019.110599 |
[28] |
HUMPF H U, SCJMELZ E M, MEREDITHI F I, VESPER H, VALES T R, WANG E, MENALDINO D S, LIOTTA D C, MERRILL A H. Acylation of naturally occurring and synthetic 1- deoxysphinganines by ceramide synthase. The Journal of Biological Chemistry, 1998,273(30):19060-19064.
doi: 10.1074/jbc.273.30.19060 |
[29] |
BERTHILLER F, DALL'ASTA C, SCHUHMACHER R, LEMMENS M, ADAM G, KRSKA R. Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 2005,53(9):3421-3425. doi: 10.1021/jf047798g.
doi: 10.1021/jf047798g |
[30] |
NATHANAIL A V, SYVÄHUOKO J, MALACHOVÁ A, JESTOI M, VARGA E, MICHLMAYR H, ADAM G, SIEVILäiNEN E, BERTHILLER F, PELTONEN K. Simultaneous determination of major type A and B trichothecenes, zearalenone and certain modified metabolites in Finnish cereal grains with a novel liquid chromatography-tandem mass spectrometric method. Analytical and Bioanalytical Chemistry, 2015,407(16):4745-4755.
doi: 10.1007/s00216-015-8676-4 |
[31] | 李凤琴, 于钏钏, 邵兵, 王伟, 于红霞. 2007-2008年中国谷物中隐蔽型脱氧雪腐镰刀烯醇及多组分真菌毒素污染状况. 中华预防医学杂志, 2011,45(1):57-63. |
LI F Q, YU C C, SHAO B, WANG W, YU H X. Natural occurrence of masked deoxynivalenol and multi-mycotoxins in cereals from China harvested in 2007 and 2008. Chinese Journal of Preventive Medicine, 2011,45(1):57-63. (in Chinese) | |
[32] |
FREIRE L, SANT'ANA A S. Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food and Chemical Toxicology, 2018,111:189-205. doi: 10.1016/j.fct.2017.11.021.
doi: 10.1016/j.fct.2017.11.021 |
[33] |
YOSHINARI T, SAKUDA S, FURIHATA K, FURUSAWA H, OHNISHI T, SUGITA-KONISHI Y, ISHIZAKI N, TERAJIMA J. Structural determination of a nivalenol glucoside and development of an analytical method for the simultaneous determination of nivalenol and deoxynivalenol, and their glucosides, in wheat. Journal of Agricultural and Food Chemistry, 2014,62(5):1174-1180. doi: 10.1021/jf4048644.
doi: 10.1021/jf4048644 |
[34] |
SASANYA J J, HALL C, WOLF-HALL C. Analysis of deoxynivalenol, masked deoxynivalenol, and Fusarium graminearum pigment in wheat samples, using liquid chromatography-UV-mass spectrometry. Journal of Food Protection, 2008,71(6):1205-1213. doi: 10.4315/0362-028x-71.6.1205.
doi: 10.4315/0362-028x-71.6.1205 |
[35] |
PALACIOS S A, ERAZO J G, CIASCA B, LATTANZIO V M T, REYNOSO M M, FARNOCHI M C, TORRES A M. Occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in durum wheat from Argentina. Food Chemistry, 2017,230:728-734. doi: 10.1016/j.foodchem.2017.03.085.
doi: 10.1016/j.foodchem.2017.03.085 |
[36] |
BRYLA M, KSIENIEWICZ-WO´ZNIAK E, WA´SKIEWICZ A, SZYMCZYK K, JEDRZEJCZAK R. Natural occurrence of nivalenol, deoxynivalenol, and Deoxynivalenol-3-Glucoside in polish winter wheat. Toxins, 2018,10(2):81.
doi: 10.3390/toxins10020081 |
[37] |
DE BOEVRE M, DI MAVUNGU J D, MAENE P, AUDENAERT K, DEFORCE D, HAESAERT G, EECKHOUT M, CALLEBAUT A, BERTHILLER F, VAN PETEGHEM C, DE SAEGER S. Development and validation of an LC-MS/MS method for the simultaneous determination of deoxynivalenol, Zearalenone, T-2-toxin and some masked metabolites in different cereals and cereal-derived food. Food Additives & Contaminants: Part A, 2012,29(5):819-835. doi: 10.1080/19440049.2012.656707.
doi: 10.1080/19440049.2012.656707 |
[38] |
WANG W, MA J J, YU C C, LIN X H, JIANG H R, SHAO B, LI E Q. Simultaneous determination of masked deoxynivalenol and some important type B trichothecenes in Chinese corn kernels and corn-based products by ultra-performance liquid chromatography- tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 2012,60(46):11638-11646. doi: 10.1021/jf3038133.
doi: 10.1021/jf3038133 |
[39] |
SCHNEWEIS I, MEYER K, ENGELHARDT G, BAUER J. Occurrence of Zearalenone-4-β-d-glucopyranoside in wheat. Journal of Agricultural and Food Chemistry, 2002,50(6):1736-1738. doi: 10.1021/jf010802t.
doi: 10.1021/jf010802t |
[40] |
MALACHOVA A, DZUMAN Z, VEPRIKOVA Z, VACLAVIKOVA M, ZACHARIASOVA M, HAJSLOVA J. Deoxynivalenol, deoxynivalenol-3-glucoside, and enniatins: The major mycotoxins found in cereal-based products on the Czech market. Journal of Agricultural and Food Chemistry, 2011,59(24):12990-12997. doi: 10.1021/jf203391x.
doi: 10.1021/jf203391x |
[41] |
VENDL O, CREWS C, MACDONALD S, KRSKA R, BERTHILLER F. Occurrence of free and conjugated Fusarium mycotoxins in cereal-based food. Food Additives & Contaminants: Part A, 2010,27(8):1148-1152. doi: 10.1080/19440041003801166.
doi: 10.1080/19440041003801166 |
[42] |
DE BOEVRE M, JACXSENS L, LACHAT C, EECKHOUT M, DI MAVUNGU J D, AUDENAERT K, MAENE P, HAESAERT G, KOLSTEREN P, DE MEULENAER B, DE SAEGER S. Human exposure to mycotoxins and their masked forms through cereal-based foods in Belgium. Toxicology Letters, 2013,218(3):281-292. doi: 10.1016/j.toxlet.2013.02.016.
doi: 10.1016/j.toxlet.2013.02.016 |
[43] |
LEE S Y, WOO S Y, TIAN F, SONG J, MICHLMAYR H, KIM J B, CHUN H S. Occurrence of deoxynivalenol, nivalenol, and their glucosides in korean market foods and estimation of their population exposure through food consumption. Toxins, 2020,12:89.
doi: 10.3390/toxins12020089 |
[44] |
RAHIMI E, SADEGHI E, BOHLOULI S, KARAMI F. Fates of deoxynivalenol and deoxynivalenol-3-glucoside from wheat flour to Iranian traditional breads. Food Control, 2018,91:339-343.
doi: 10.1016/j.foodcont.2018.04.014 |
[45] |
JIN Z, ZHOU B, GILLESPIE J, GROSS T, BARR J, SIMSEK S, BRUEGGEMAN R, SCHWARZ P. Production of deoxynivalenol (DON) and DON-3-glucoside during the malting of Fusarium infected hard red spring wheat. Food Control, 2018,85:6-10.
doi: 10.1016/j.foodcont.2017.09.002 |
[46] | BERTHILLER F, CREWS C, DALL’ASTA C, SAEGER S D, HAESAERT G, KARLOVSKY P, OSWALD I P, SEEFELDER W, SPEIJERS G, STROKA J. Masked mycotoxins: A review. Molecular Nutrition & Food Research, 2013,57:165-186. |
[47] | PASCARI X, GIL-SAMARRA S, MARIN S, RAMOS A J, SANCHIS V. Fate of zearalenone, deoxynivalenol and deoxynivalenol- 3-glucoside during malting process. Food Science and Technology, 2019,99:540-546. |
[48] | 中华人民共和国卫生部. 食品安全国家标准食品中真菌毒素限量: GB 2761—2017. 北京: 中国标准出版社, 2017. |
Ministry of Health of the PRC. National food safety standard limit of mycotoxin in food: GB 2761-2017. Beijing: China Standards Press, 2017. (in Chinese) | |
[49] |
STOEV S D. Foodborne mycotoxicoses, risk assessment and underestimated hazard of masked mycotoxins and joint mycotoxin effects or interaction. Environmental Toxicology and Pharmacology, 2015,39(2):794-809. doi: 10.1016/j.etap.2015.01.022.
doi: 10.1016/j.etap.2015.01.022 |
[50] | 吴限鑫, 林秋君, 郭春景, 王建忠, 王雪鑫, 李广. 国内外主要粮油产品中真菌毒素限量、检测标准及风险评估现状分析. 中国粮油学报, 2019,34(9):130-138. |
WU X X, LIN Q J, GUO C J, WANG J Z, WANG X X, LI G. Analysis of limits, testing standards and risk assessment of mycotoxins in major grain and oil products at home and abroad. Journal of the Chinese Cereals and Oils Association, 2019,34(9):130-138. (in Chinese) | |
[51] |
BERTHILLER F, KRSKA R, DOMIG K J, KNEIFEL W, JUGE N, SCHUHMACHER R, ADAM G. Hydrolytic fate of deoxynivalenol- 3-glucoside during digestion. Toxicology Letters, 2011,206(3):264-267. doi: 10.1016/j.toxlet.2011.08.006.
doi: 10.1016/j.toxlet.2011.08.006 |
[52] |
ABBOTT A. Microbiology: Gut reaction. Nature, 2004,427(6972):284-286. doi: 10.1038/427284a.
doi: 10.1038/427284a |
[53] |
HATTORI M, TAYLOR T D. The human intestinal microbiome: A new frontier of human biology. DNA Research, 2009,16(1):1-12. doi: 10.1093/dnares/dsn033.
doi: 10.1093/dnares/dsn033 |
[54] |
ZHANG Z Q, NIE D X, FAN K, YANG J H, GUO W B, MENG J J, ZHAO Z H, HAN Z. A systematic review of plant-conjugated masked mycotoxins: Occurrence, toxicology, and metabolism. Critical Reviews in Food Science and Nutrition, 2020,60(9):1523-1537. doi: 10.1080/10408398.2019.1578944.
doi: 10.1080/10408398.2019.1578944 |
[55] |
ROGOWSKA A, POMASTOWSKI P, SAGANDYKOVA G, BUSZEWSKI B. Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. Toxicon, 2019,162:46-56. doi: 10.1016/j.toxicon.2019.03.004.
doi: 10.1016/j.toxicon.2019.03.004 |
[56] |
NAGL V, SCHATZMAYR G. Deoxynivalenol and its masked forms in food and feed. Current Opinion in Food Science 2015,5:43-49.
doi: 10.1016/j.cofs.2015.08.001 |
[57] |
HE J W, BONDY G S, ZHOU T, CALDWELL D, BOLAND G J, SCOTT P M. Toxicology of 3-epi-deoxynivalenol, a deoxynivalenol- transformation product by Devosia mutans 17-2-E-8. Food and Chemical Toxicology, 2015,84:250-259. doi: 10.1016/j.fct.2015.09.003.
doi: 10.1016/j.fct.2015.09.003 |
[58] |
YAO Y, LONG M. The biological detoxification of deoxynivalenol: A review. Food and Chemical Toxicology, 2020,145:111649. doi: 10.1016/j.fct.2020.111649.
doi: 10.1016/j.fct.2020.111649 |
[59] |
BRACARENSE A P F L, PIERRON A, PINTON P, GEREZ J R, SCHATZMAYR G, MOLL W D, ZHOU T, OSWALD I P. Reduced toxicity of 3-epi-deoxynivalenol and de-epoxy-deoxynivalenol through deoxynivalenol bacterial biotransformation: in vivo analysis in piglets. Food and Chemical Toxicology, 2020,140:111241. doi: 10.1016/j.fct.2020.111241.
doi: 10.1016/j.fct.2020.111241 |
[60] |
DALL'ASTA C, GALAVERNA G, MANGIA M, SFORZA S, DOSSENA A, MARCHELLI R. Free and bound fumonisins in gluten-free food products. Molecular Nutrition & Food Research, 2009,53(4):492-499. doi: 10.1002/mnfr.200800088.
doi: 10.1002/mnfr.200800088 |
[61] | 张晓明, 杨治彪, 高升成. 农产品中真菌毒素的管控. 现代农业科技, 2016(3):322-323. |
ZHANG X M, YANG Z B, GAO S C. Control of mycotoxins in agricultural products. Modern Agricultural Science and Technology, 2016(3):322-323. (in Chinese) | |
[62] | 周贻兵, 李磊, 吴玉田, 刘利亚. 小麦粉中2种新型真菌毒素含量测定方法. 食品工业, 2021,42(5):448-451. |
ZHOU Y B, LI L, WU Y T, LIU L Y. Determination method of two new mycotoxins in wheat flour. The Food Industry, 2021,42(5):448-451. (in Chinese) | |
[63] |
LANCOVA K, HAJSLOVA J, POUSTKA J, KRPLOVA A, ZACHARIASOVA M, DOSTALEK P, SACHAMBULA L. Transfer of Fusarium mycotoxins and ‘masked’ deoxynivalenol (deoxynivalenol- 3-glucoside) from field barley through malt to beer. Food Additives & Contaminants: Part A, 2008,25(6):732-744. doi: 10.1080/02652030701779625.
doi: 10.1080/02652030701779625 |
[64] |
NERVA L, CHITARRA W, SICILIANO I, GAIOTTI F, CIUFFO M, FORGIA M, VARESE G C, TURINA M. Mycoviruses mediate mycotoxin regulation in Aspergillus ochraceus. Environmental Microbiology, 2019,21(6):1957-1968. doi: 10.1111/1462-2920.14436.
doi: 10.1111/1462-2920.14436 |
[65] |
HOENISCH R W, DAVIS R M. Relationship between kernel pericarp thickness and susceptibility to Fusarium ear rot in field corn. Plant Disease, 1994,78(5):517-519.
doi: 10.1094/PD-78-0517 |
[66] |
DORNER J W. Efficacy of a biopesticide for control of aflatoxins in corn. Journal of Food Protection, 2010,73(3):495-499. doi: 10.4315/0362-028x-73.3.495.
doi: 10.4315/0362-028x-73.3.495 |
[67] |
WU Q H, KUČA K, HUMPF H U, KLÍMOVÁ B, CRAMER B. Fate of deoxynivalenol and deoxynivalenol-3-glucoside during cereal- based thermal food processing: a review study. Mycotoxin Research, 2017,33(1):79-91. doi: 10.1007/s12550-016-0263-9.
doi: 10.1007/s12550-016-0263-9 |
[68] | 吕聪, 邢福国, 刘阳. 国内外真菌毒素防控新技术. 中国猪业, 2017,12(6):27-32. |
LÜ C, XING F G, LIU Y. New technologies of mycotoxin prevention and control at home and abroad. China Swine Industry, 2017,12(6):27-32. (in Chinese) | |
[69] |
TIAN Y, TAN Y L, LIU N, YAN Z, LIAO Y C, CHEN J, DE SAEGER S, YANG H, ZHANG Q Y, WU A B. Detoxification of deoxynivalenol via glycosylation represents novel insights on antagonistic activities of Trichoderma when confronted with Fusarium graminearum. Toxins, 2016,8(11):335.
doi: 10.3390/toxins8110335 |
[70] |
SHIMA J, TAKASE S, TAKAHASHI Y, IWAI Y, OCHI K. Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture. Applied and Environmental Microbiology, 1997,63(10):3825-3830.
doi: 10.1128/aem.63.10.3825-3830.1997 |
[71] | 何伟杰, 刘易科, 朱展望, 张静伯, 高春保, 廖玉才. 镰刀菌毒素脱氧雪腐镰刀菌烯醇脱毒菌及脱毒酶研究进展. 植物病理学报, 2019,49(5):577-589. |
HE W J, LIU Y K, ZHU Z W, ZHANG J B, GAO C B, LIAO Y C. Recent progress on microbial and enzymatic detoxification of Fusarium mycotoxin deoxynivalenol. Acta Phytopathologica Sinica, 2019,49(5):577-589. (in Chinese) | |
[72] |
GUAN S, HE J W, YOUNG J C, ZHU H H, LI X Z, JI C, ZHOU T. Transformation of trichothecene mycotoxins by microorganisms from fish digesta. Aquaculture, 2009,290(3):290-295.
doi: 10.1016/j.aquaculture.2009.02.037 |
[1] | 乔远,杨欢,雒金麟,汪思娴,梁蓝月,陈新平,张务帅. 西北地区玉米生产投入及生态环境风险评价[J]. 中国农业科学, 2022, 55(5): 962-976. |
[2] | 任义方,杨章平,零丰华,肖良文. 江苏奶牛热应激风险区划及其受气候变化的影响[J]. 中国农业科学, 2022, 55(22): 4513-4525. |
[3] | 毛连纲,郭明程,袁善奎,张兰,蒋红云,刘新刚. 基于推荐用量的我国果蔬小型害虫登记用药现状分析[J]. 中国农业科学, 2022, 55(11): 2161-2173. |
[4] | 张峭,王克. 农业生产风险评估及农业保险费率厘定的不确定性:研究进展和破解之道[J]. 中国农业科学, 2021, 54(22): 4778-4786. |
[5] | 王小彬, 闫湘, 李秀英. 畜禽粪污厌氧发酵沼液农用之环境安全风险[J]. 中国农业科学, 2021, 54(1): 110-139. |
[6] | 徐永红,陈力,唐松,丁德宽,杨宇衡. 柑橘轮斑病的适生区预测及风险分析[J]. 中国农业科学, 2020, 53(21): 4430-4439. |
[7] | 李晓贝,赵晓燕,李健英,陈磊,周昌艳,何香伟. 氯噻啉在青菜上的残留特性及其膳食摄入风险评估[J]. 中国农业科学, 2020, 53(17): 3587-3596. |
[8] | 王小彬,闫湘,李秀英,冀宏杰. 磷石膏农用的环境安全风险[J]. 中国农业科学, 2019, 52(2): 293-311. |
[9] | 贾士荣. 基因工程作物的安全评估与监管:历史回顾与改革思考[J]. 中国农业科学, 2018, 51(4): 601-612. |
[10] | 盖霞普,刘宏斌,翟丽梅,杨波,任天志,王洪媛,武淑霞,雷秋良. 长期增施有机肥/秸秆还田对土壤氮素淋失风险的影响[J]. 中国农业科学, 2018, 51(12): 2336-2347. |
[11] | 胡桂仙,赖爱萍,袁玉伟,张志恒,赵首萍,朱加虹,王强. 消费者膳食中二氧化硫残留的累积性风险评估[J]. 中国农业科学, 2017, 50(7): 1317-1325. |
[12] | 徐笠,陆安祥,田晓琴,何洪巨,殷敬伟. 典型设施蔬菜基地重金属的累积特征及风险评估[J]. 中国农业科学, 2017, 50(21): 4149-4158. |
[13] | 李志霞,聂继云,闫震,张晓男,关棣锴,沈友明,程杨 . 果品主要真菌毒素污染检测、风险评估与控制研究进展[J]. 中国农业科学, 2017, 50(2): 332-347. |
[14] | 叶孟亮,聂继云,徐国锋,闫 震,郑丽静. 苹果中4种常用农药残留及其膳食暴露评估[J]. 中国农业科学, 2016, 49(7): 1289-1302. |
[15] | 罗彦涛,孟润杰,赵建江,韩秀英,马志强,王文桥,张小风. 马铃薯晚疫病菌对氟吡菌胺抗性突变体的获得及其生物学性状[J]. 中国农业科学, 2016, 49(19): 3733-3745. |
|