中国农业科学 ›› 2020, Vol. 53 ›› Issue (21): 4430-4439.doi: 10.3864/j.issn.0578-1752.2020.21.011

• 植物保护 • 上一篇    下一篇

柑橘轮斑病的适生区预测及风险分析

徐永红1(),陈力2,唐松3,丁德宽4,杨宇衡1()   

  1. 1西南大学植物保护学院,重庆 400715
    2重庆市万州区植物保护站,重庆 404000
    3重庆市梁平区农业技术服务中心,重庆 405200
    4城固县果业技术指导站,陕西城固723200
  • 收稿日期:2020-03-19 接受日期:2020-04-22 出版日期:2020-11-01 发布日期:2020-11-11
  • 通讯作者: 杨宇衡
  • 作者简介:徐永红,E-mail:1506262894@qq.com
  • 基金资助:
    国家重点研发计划(2018YFD0200500);重庆市博士后科研项目特别资助(Xm2016124)

Prediction of Suitable Area and Risk Analysis for Citrus Target Spot

XU YongHong1(),CHEN Li2,TANG Song3,DING DeKuan4,YANG YuHeng1()   

  1. 1College of Plant Protection, Southwest University, Chongqing 400715
    2Wanzhou Plant Protection Station, Chongqing 404000
    3Liangping Agricultural Technical Service Center, Chongqing 405200
    4Chenggu Fruit Industry Technical Guidance Station, Chenggu 723200, Shaanxi
  • Received:2020-03-19 Accepted:2020-04-22 Online:2020-11-01 Published:2020-11-11
  • Contact: YuHeng YANG

摘要:

【目的】 柑橘轮斑病(citrus target spot)作为一种新发柑橘病害,造成发病果园严重的经济损失。本研究针对该病害进行适生区预测及风险分析,以便对该病采取及时、有效的管控措施,最终达到降低其流行风险等级,防止病害传播扩展的目的。【方法】 基于环境变量数据和柑橘轮斑病发生分布数据,运用MaxEnt生态位模型模拟预测柑橘轮斑病菌(Pseudofabraea citricarpa)在中国的潜在适生区分布。并通过ROC(receiver operating characteristic)曲线下面积(area under the curve,AUC)评估预测模型的精度,运用正规化训练增益刀切法(regularized training gain)获取气候因子与分布概率间的关系。同时采用有害生物风险分析理论,以有害生物风险分析的规定程序为依据探索柑橘轮斑病病害的风险分析体系和评价值的计算方法,对评价指标进行定性分析,进而量化评价值。在建立综合评价模型的基础上,计算柑橘轮斑病风险性危害值,最后对病害的风险性危害值进行评价。【结果】 柑橘轮斑病菌MaxEnt模型预测结果的平均AUC值为0.998,表明预测结果精度高。柑橘轮斑病菌的潜在适生区面积约占全国面积12.19%,高适生区、中适生区、低适生区各占全国面积约2.85%、3.99%、5.35%。高、中适生区主要集中于长江中上游柑橘优势区及其周边。其中,高适生区主要集中在四川、重庆、陕西南部,以及贵州、湖北等少量地区。中、低适生区是高适生区的外围扩展。通过MaxEnt模型正规化训练增益刀切法获取的环境变量重要性分析结果表明,最冷季度平均温度(Bio11)、最干季度平均温度(Bio9)、最冷月最低温(Bio6)是影响柑橘轮斑病菌分布的3个关键环境因子,这意味着低温、干冷季节柑橘轮斑病发生可能性大。风险分析最终创建出5个准则层、13个指标层的多指标综合评价体系,并对各指标层定量与定性分析,柑橘轮斑病在我国的风险性危害值(R值)为2.08,处于高度风险等级,对长江中上游及湖北西部-湖南西部两大柑橘产区的潜在危害最大。【结论】 柑橘轮斑病风险性较高,需要尽快建立监测体系,针对病害采取有效控制措施,阻止病害在长江中上游柑橘优势区及相邻柑橘产区传播。

关键词: 柑橘轮斑病, 柑橘轮斑病菌, 全国适生区等级划分, 多指标综合评价方法, 风险分析

Abstract:

【Objective】Citrus target spot, a new disease reported in China, has caused serious economic losses in the local orchards. Therefore, it is necessary to carry out the prediction of the suitable area and risk analysis of the disease, so as to take timely and effective control measures for the disease, and finally achieve the purpose of reducing the risk level and preventing the spread of this disease.【Method】Combined the environmental data and the occurrence and distribution data of the disease areas, MaxEnt ecological niche models were used to predict the potential suitable area of citrus target spot pathogen (Pseudofabraea citricarpa) in China. The area under the curve (AUC) of receiver operating characteristic (ROC) was used to evaluate the accuracy of the prediction model, and the relationship between the climate factor and the distribution probability was obtained using the regularized training gain method. Additionally, the theory of pest risk analysis was used to explore the risk analysis system and calculation method of citrus target spot based on the prescribed procedures of pest risk analysis. Qualitative analysis of the evaluation indicators was conducted to quantify the evaluation values. Based on establishing a comprehensive evaluation model, the risk hazard value of citrus target spot was calculated, and finally the risk hazard value of the disease was evaluated.【Result】The average AUC value of the predicted result of MaxEnt model was 0.998, which indicated that the predicted result was highly accurate. The area of potential suitable areas for P. citricarpa accounts for 12.19% of the national area. Among them, the areas of high suitability, medium suitability, and low suitability account for about 2.85%, 3.99%, and 5.35% of the national area, respectively. The high and middle suitable areas are mainly concentrated in the citrus dominant area in the upper and middle reaches of the Yangtze River. Among them, high suitable area is mainly concentrated in Sichuan, Chongqing, southern Shaanxi, and a few areas in Guizhou and Hubei. The middle and low suitable areas are the peripheral expansion of the high suitable area. The analysis results of the importance of environmental variables obtained by the MaxEnt model normalization training gain knife-cut method show that the mean temperature in the coldest quarter (Bio11), the mean temperature in the driest quarter (Bio9), and the minimum temperature of the coldest month (Bio6) are the key factors affecting the distribution of P. citricarpa, which means that there is a high possibility of citrus target spot in low temperature and dry and cold seasons. The risk analysis finally created a multi-index comprehensive evaluation system of 5 criterion layers and 13 indicator layers, and quantitative and qualitative analyses of each indicator layer. The risk index value (R) of the disease was up to 2.08. This disease has the greatest potential harm to the two major citrus-producing areas in the Yangtze River Basin and in western Hubei and western Hunan.【Conclusion】In view of the high risk of citrus target spot, it is necessary to establish a monitoring system as soon as possible, and take effective control measures against the disease to prevent the spread between the citrus dominant area and adjacent citrus-producing areas in the upper and middle reaches of the Yangtze River.

Key words: citrus target spot, Pseudofabraea citricarpa, national classification of suitable grades, multi-index comprehensive evaluation method, risk analysis