中国农业科学 ›› 2020, Vol. 53 ›› Issue (14): 2872-2884.doi: 10.3864/j.issn.0578-1752.2020.14.011
收稿日期:
2020-01-10
接受日期:
2020-02-21
出版日期:
2020-07-16
发布日期:
2020-08-10
通讯作者:
刘政,黄家风
作者简介:
孙琦,E-mail:基金资助:
SUN Qi(),HE Fang,SHAO ShengNan,LIU Zheng(
),HUANG JiaFeng(
)
Received:
2020-01-10
Accepted:
2020-02-21
Online:
2020-07-16
Published:
2020-08-10
Contact:
Zheng LIU,JiaFeng HUANG
摘要:
【目的】明确棉花黄萎病菌(大丽轮枝菌Verticillium dahliae)中一个新基因(VdHP1)的功能,为解析棉花黄萎病菌的致病机制以及棉花黄萎病的防治提供依据。【方法】以大丽轮枝菌野生型菌株V592的基因组DNA和cDNA为模板,对VdHP1全长进行克隆并测序;利用逆转录实时荧光定量PCR(RT-qPCR)分别对棉花根系诱导不同时间VdHP1的表达量及V592菌株不同组织中VdHP1的表达量进行测定;构建针对VdHP1的敲除载体、互补载体和过表达载体,通过农杆菌介导的遗传转化筛选VdHP1基因敲除突变体、互补菌株和过表达菌株;以野生型菌株V592为对照,对VdHP1基因敲除突变体及互补菌株的菌落及菌丝形态进行观察,并对微菌核量、产孢量及致病力进行测定;通过RT-qPCR测定其他致病力相关的基因在VdHP1基因敲除突变体及过表达体菌株中的表达情况。【结果】VdHP1全长为862bp,预测编码蛋白含268个氨基酸,与GenBank中已注释的基因没有任何的序列相似性。野生型菌株V592受棉花根系诱导6—12 h时VdHP1表达水平显著上调,表明VdHP1在大丽轮枝菌侵染早期发挥作用。VdHP1在分生孢子中的表达量显著高于在菌丝和微菌核中的表达量,表明VdHP1在大丽轮枝菌不同组织中的表达具有差异性。与野生型菌株V592相比,VdHP1基因敲除突变体产孢量和产孢梗显著减少,菌丝分支呈螺旋状,对棉花的致病力明显下降。与侵染钉形成相关基因(VdCrz1、VdNoxB、VdPls1)、分泌蛋白释放相关基因(VdSep5)及分生孢子产生相关基因(Vdpf、VdSge1、VGB、VdPLP、VdCYC8、VdNLP1、VdNLP2)在VdHP1基因敲除体中的相对表达量显著下调,在过表达菌株中上调;而与黑色素合成相关基因(VdCmr1、VdSho1、VdLAC、VdPKS1)在VdHP1基因敲除突变体中则显著上调,在过表达菌株中下调。【结论】VdHP1与大丽轮枝菌分生孢子和产孢梗的产生有关,参与大丽轮枝菌致病;VdHP1对与侵染钉形成、分泌蛋白释放及分生孢子产生相关基因的表达具有正调控作用,对黑色素合成相关基因的表达具有负调控作用。
孙琦,何芳,邵胜楠,刘政,黄家风. 棉花黄萎病菌VdHP1的克隆及功能分析[J]. 中国农业科学, 2020, 53(14): 2872-2884.
SUN Qi,HE Fang,SHAO ShengNan,LIU Zheng,HUANG JiaFeng. Cloning and Functional Analysis of VdHP1 in Verticillium dahliae from Cotton[J]. Scientia Agricultura Sinica, 2020, 53(14): 2872-2884.
表1
载体构建所用引物"
引物Primer | 引物序列Primer sequence (5′-3′) |
---|---|
VdHP1 full-F | ATGCGTTTCTTCGCCTTTTT |
VdHP1 full-R | TAGTCCATTCTGATCCATGT |
VdHP1 up-F | CTTGCTGAGGTCTTAATTAAACCTCCAAGGCATCGTTGC |
VdHP1 up- R | AGTGCTGAGGCATTAATTAACAAACGAGACGCGAATGGTG |
VdHP1 down-F | CCCGCTGAGGACTTAATTAA GGATCTTGCGTCTCGTAGGT |
VdHP1 down- R | CTCGCTGAGGGTTTAATTAA AGGCCATTCATTACGATGCC |
HygU | AACCACGGCCTCCAGAAGAA |
HygL | AGCCTGACCTATTGCATCTCCC |
ECVdHP1-F | CGGCCAGTGCCAAGCTT AAATATCGTGTGGTGCGAAA |
ECVdHP1-R | GCAGCTTCTGCGAATTC TTAGTCCATTCTGATCCATG |
OEVdHP1-F | AATGAATATAGGCCGTCGACATGCGTTTCTTCGCCTTTTT |
OEVdHP1-R | CTGCATCCGAATTCACTAGTTTAGTCCATTCTGATCCATGC |
VdHP1-qPCR-F | AGAGCCAGAGGGTTCGTGGA |
VdHP1-qPCR-R | ATGCGTTTCTTCGCCTTTTTACAGA |
表2
被检测的致病相关基因及其引物"
基因Gene | 引物Primer | 引物序列Primer sequence (5′-3′) |
---|---|---|
VdPKS1 (VDAG_00190) | VdPKS1-F | ATGGTCGGCACCATGTCTTTTCTCC |
VdPKS1-R | GCCTGTTCGAGAAAGGTCTTGGCAA | |
VMK1 (VDAG_09461.1) | VMK1-F | CGCAGCAACGCCCCTAATC |
VMK1-R | GGCAGTGGTCATCGGAGAGGT | |
VdNLP1 (VDAG_04701.1) | VdNLP1-F | TCGGTCTTTGCCCTCGTC |
VdNLP1-R | GCCTGGTTTGCGTTGTTC | |
VdNLP2 (VDAG_01995.1) | VdNLP2-F | AAGCCGTACCTCAAGGTGTTCA |
VdNLP2-R | CCGACCCAAAGTCCGTGTTCT | |
VdCYC8 (VDAG_07052) | VdCYC8-F | GGATGCCCTCGATGCTTACT |
VdCYC8-R | CGTCGCTGATCTGGTTGTTG | |
VGB (JQ665433.1) | VGB-F | GCAATCTCCAAACGACGTGTCG |
VGB-R | GCGAACTGACGTGTGGTGTCGG | |
VdSge1 (VDAG_06298.1) | VdSge1-F | CATGGATCCTTCCGAGGCATCTAG |
VdSge1-R | GATGATGCGGGACGCTTCTGAAC | |
VdHog1 (VDAG_08982) | VdHog1-F | CTTCCACGTGTCTACTGGCAGG |
VdHog1-R | TGCTCCTTACCACGACCTTACCGA | |
VdNoxB (VDAG_09930) | VdNoxB-F | TGCGTGGCAAGCATAAGACATAC |
VdNoxB-R | GACAGCACGAGTGAAATCACCAAC | |
VdPls1 (VDAG_01769) | VdPls1-F | ATGGTCAACAAGATCCTCGCGA |
VdPls1-R | TCCGGCTGCTCAAACATGTTGT | |
VdSep5 (VDAG_04382) | VdSep5-F | AGCTCGACCTGGACGAGGA |
VdSep5-R | GAGGCTTCGTTATCAATCTCGTCTC | |
VdSho1 (VDAG_01836) | VdSho1-F | GAGATAACCCAAAGGGCCATGGG |
VdSho1-R | GAGAGCGTATCCAATCGCACC | |
VdCrz1 (VDAG_03208) | VdCrz1-F | ATGGATCAGCAAGCTCAACATCG |
VdCrz1-R | GATCCAGACCGAGACCGAGAC | |
VdLAC (VDAG_00189) | VdLAC-F | ATGCTCTTCTCGCGTTTCCTCA |
VdLAC-R | GCCACTGACCATTGATGCCAAT | |
VdCmr1 (VDAG_00195) | VdCmr1-F | GCGCCACAAGCTCTGCATCTTC |
VdCmr1-R | CAGAATCAAGGTGGCGCGATACAC | |
VdPLP (VDAG_00942) | VdPLP-F | GCTGACCAGTATCTGTCGGAGG |
VdPLP-R | ATGACGACTGGCTTCTCGGCCT | |
Vdpf (VDAG_08521.1) | Vdpf-F | ACCATTTTCAACAGTCGGGTACGCG |
Vdpf-R | GTGTGACGTACCAGCAACCGCTT | |
β-tubulin (DQ266153) | β-tubulin-F | TCACCAGCCGTGGCAAGGTTG |
β-tubulin-R | AGCAAAGGGCGGTCTGGACGTTG |
[1] | 朱荷琴, 李志芳, 冯自力, 冯鸿杰, 魏锋, 赵丽红, 师勇强, 刘世超, 周京龙. 我国棉花黄萎病研究十年回顾及展望. 棉花学报, 2017,29(增刊):37-50. |
ZHU H Q, LI Z F, FENG Z L, FENG H J, WEI F, ZHAO L H, SHI Y Q, LIU S C, ZHOU J L. Overview of cotton verticillium wilt research over the past decade in China and its prospect in future. Cotton Science, 2017,29(Suppl.):37-50. (in Chinese) | |
[2] |
KAWCHUK L M, HACHEY J, LYNCH D R, KULCSAR F, VAN ROOIJEN G, WATERER D R, ROBERTSON A, KOKKO E, BYERS R, HOWARD R G, FISHER R, PRUFER D. Tomato Ve disease resistance genes encode cell surface-like receptors. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(11):6511-6515.
pmid: 11331751 |
[3] |
GAO F, ZHANG B S, ZHAO J H, HUANG J F, JIA P S, WANG S, ZHANG J, ZHOU J M, GUO H S. Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. Nature Plants, 2019,5(11):1167-1176.
doi: 10.1038/s41477-019-0527-4 pmid: 31636399 |
[4] |
QIN J, WANG K, SUN L, XING H, WANG S, LI L, CHEN S, GUO H S, ZHANG J. The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity. Elife, 2018,7: DOI: 10.7554/eLife.34902.
pmid: 29376824 |
[5] |
ZHOU B J, JIA P S, GAO F, GUO H S. Molecular characterization and functional analysis of a necrosis- and ethylene-inducing, protein- encoding gene family from Verticillium dahliae. Molecular Plant- Microbe Interactions, 2012,25(7):964-975.
doi: 10.1094/MPMI-12-11-0319 pmid: 22414440 |
[6] |
SANTHANAM P, VAN ESSE H P, ALBERT I, FAINO L, NURNBERGER T, THOMMA B P. Evidence for functional diversification within a fungal NEP1-like protein family. Molecular Plant-Microbe Interactions, 2013,26(3):278-286.
doi: 10.1094/MPMI-09-12-0222-R pmid: 23051172 |
[7] |
GUI Y J, ZHANG W Q, ZHANG D D, ZHOU L, SHORT D P G, WANG J, MA X F, LI T G, KONG Z Q, WANG B L, WANG D, LI N Y, SUBBARAO K V, CHEN J Y, DAI X F. A Verticillium dahliae extracellular cutinase modulates plant immune responses. Molecular Plant-Microbe Interactions, 2018,31(2):260-273.
pmid: 29068240 |
[8] |
ZHAO Y L, ZHOU T T, GUO H S. Hyphopodium-specific VdNoxB/ VdPls1-dependent ROS-Ca2+ signaling is required for plant infection by Verticillium dahliae. PLoS Pathogens, 2016,12(7):e1005793.
pmid: 27463643 |
[9] |
ZHOU T T, ZHAO Y L, GUO H S. Secretory proteins are delivered to the septin-organized penetration interface during root infection by Verticillium dahliae. PLoS Pathogens, 2017,13(3):e1006275.
doi: 10.1371/journal.ppat.1006275 |
[10] |
BUI T T, HARTING R, BRAUS-STROMEYER S A, TRAN V T, LEONARD M, HOFER A, ABELMANN A, BAKTI F, VALERIUS O, SCHLUTER R, STANLEY C E, AMBROSIO A, BRAUS G H. Verticillium dahliae transcription factors Som1 and Vta3 control microsclerotia formation and sequential steps of plant root penetration and colonisation to induce disease. New Phytologist, 2019,221(4):2138-2159.
pmid: 30290010 |
[11] |
LUO X, MAO H, WEI Y, CAI J, XIE C, SUI A, YANG X, DONG J. The fungal-specific transcription factor Vdpf influences conidia production, melanized microsclerotia formation and pathogenicity in Verticillium dahliae. Molecular Plant Pathology, 2016,17(9):1364-1381.
doi: 10.1111/mpp.12367 pmid: 26857810 |
[12] |
SANTHANAM P, THOMMA B P H J. Verticillium dahliae Sge1 differentially regulates expression of candidate effector genes. Molecular Plant-Microbe Interactions, 2013,26(2):249-256.
pmid: 22970788 |
[13] |
WANG Y, HU X, FANG Y, ANCHIETA A, GOLDMAN P H, HERNANDEZ G, KLOSTERMAN S J. Transcription factor VdCmr1 is required for pigment production, protection from UV irradiation, and regulates expression of melanin biosynthetic genes in Verticillium dahliae. Microbiology, 2018,164(4):685-696.
pmid: 29485393 |
[14] |
WANG Y, DENG C, TIAN L, XIONG D, TIAN C, KLOSTERMAN S J. The transcription factor VdHapX controls iron homeostasis and is crucial for virulence in the vascular pathogen Verticillium dahliae. mSphere, 2018,3(5):e00400-18.
doi: 10.1128/mSphere.00400-18 pmid: 30185514 |
[15] |
LI J J, ZHOU L, YIN C M, ZHANG D D, KLOSTERMAN S J, WANG B L, SONG J, WANG D, HU X P, SUBBARAO K V, CHEN J Y, DAI X F. The Verticillium dahliae Sho1-MAPK pathway regulates melanin biosynthesis and is required for cotton infection. Environmental Microbiology, 2019,21(12):4852-4874.
doi: 10.1111/1462-2920.14846 pmid: 31667948 |
[16] |
RAUYAREE P, OSPINA-GIRALDO M D, KANG S, BHAT R G, SUBBARAO K V, GRANT S J, DOBINSON K F. Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation and pathogenicity in Verticillium dahliae. Current Genetics, 2005,48(2):109-116.
pmid: 16003535 |
[17] | TIAN L, XU J, ZHOU L, GUO W. VdMsb regulates virulence and microsclerotia production in the fungal plant pathogen Verticillium dahliae. Gene, 2014,550(2):238-244. |
[18] |
TIAN L, YU J, WANG Y, TIAN C. The C2H2 transcription factor VdMsn2 controls hyphal growth, microsclerotia formation, and virulence of Verticillium dahliae. Fungal Biology, 2017,121(12):1001-1010.
doi: 10.1016/j.funbio.2017.08.005 pmid: 29122172 |
[19] |
TZIMA A, PAPLOMATAS E J, RAUYAREE P, KANG S. Roles of the catalytic subunit of cAMP-dependent protein kinase A in virulence and development of the soilborne plant pathogen Verticillium dahliae. Fungal Genetics and Biology, 2010,47(5):406-415.
doi: 10.1016/j.fgb.2010.01.007 pmid: 20144723 |
[20] |
TZIMA A K, PAPLOMATAS E J, TSITSIGIANNIS D I, KANG S. The G protein β subunit controls virulence and multiple growth- and development-related traits in Verticillium dahliae. Fungal Genetics and Biology, 2012,49(4):271-283.
pmid: 22387367 |
[21] | 宋雯, 王春巧, 俞燕, 高峰, 黄家风. 棉花黄萎病菌鸟氨酸脱羧酶抗酶蛋白基因VdOAZ的功能分析. 棉花学报, 2019,31(2):101-113. |
SONG W, WANG C Q, YU Y, GAO F, HUANG J F. Functional analysis of an ornithine decarboxylase antizyme gene VdOAZ in Verticillium dahliae isolated from cotton. Cotton Science, 2019,31(2):101-113. (in Chinese) | |
[22] | 王春巧, 陈志荣, 宋雯, 何芳, 黄家风. 一个编码富含丝氨酸蛋白的基因影响大丽轮枝菌的微菌核形成、产孢及致病力. 植物病理学报, 2019,49(5):650-659. |
WANG C Q, CHEN Z R, SONG W, HE F, HUANG J F. A serine-rich protein identified in Verticillium dahliae affects microsclerotial formation, conidiation and pathogenicity. Acta Phytopathologica Sinica, 2019,49(5):650-659. (in Chinese) | |
[23] |
WANG S, XING H, HUA C, GUO H S, ZHANG J. An improved single-step cloning strategy simplifies the Agrobacterium tumefaciens- mediated transformation (ATMT)-based gene-disruption method for Verticillium dahliae. Phytopathology, 2016,106(6):645-652.
doi: 10.1094/PHYTO-10-15-0280-R pmid: 26780432 |
[24] |
GAO F, ZHOU B J, LI G Y, JIA P S, LI H, ZHAO Y L, ZHAO P, XIA G X, GUO H S. A glutamic acid-rich protein identified in Verticillium dahliae from an insertional mutagenesis affects microsclerotial formation and pathogenicity. PLoS ONE, 2010,5(12):e15319.
doi: 10.1371/journal.pone.0015319 pmid: 21151869 |
[25] |
ZHANG T, ZHANG B, HUA C, MENG P, WANG S, CHEN Z, DU Y, GAO F, HUANG J. VdPKS1 is required for melanin formation and virulence in a cotton wilt pathogen Verticillium dahliae. Science China Life Sciences, 2017,60(8):868-879.
doi: 10.1007/s11427-017-9075-3 pmid: 28755294 |
[26] |
KLOSTERMAN S J, SUBBARAO K V, KANG S, VERONESE P, GOLD S E, THOMMA B P, CHEN Z, HENRISSAT B, LEE Y H, PARK J, et al. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathogens, 2011,7(7):e1002137.
pmid: 21829347 |
[27] |
BOLTON M D, VAN ESSE H P, VOSSEN J H, DE JONGE R, STERGIOPOULOS I, STULEMEIJER I J, VAN DEN BERG G C, BORRAS-HIDALGO O, DEKKER H L, DE KOSTER C G, DE WIT P J, JOOSTEN M H, THOMMA B P. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Molecular Microbiology, 2008,69(1):119-136.
pmid: 18452583 |
[28] |
VAN ESSE H P, VAN’T KLOOSTER J W, BOLTON M D, YADETA K A, VAN BAARLEN P, BOEREN S, VERVOORT J, DE WIT P J, THOMMA B P. The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. The Plant Cell, 2008,20(7):1948-1963.
pmid: 18660430 |
[29] |
VAN ESSE H P, BOLTON M D, STERGIOPOULOS I, DE WIT P J, THOMMA B P. The chitin-binding Cladosporium fulvum effector protein Avr4 is a virulence factor. Molecular Plant-Microbe Interactions, 2007,20(9):1092-1101.
pmid: 17849712 |
[30] | QI X, LI X, GUO H, GUO N, CHENG H. VdPLP, a patatin-like phospholipase in Verticillium dahliae, is involved in cell wall integrity and required for pathogenicity. Genes, 2018,9(3):162. |
[31] |
WANG Y, TIAN L, XIONG D, KLOSTERMAN S J, XIAO S, TIAN C. The mitogen-activated protein kinase gene, VdHog1, regulates osmotic stress response, microsclerotia formation and virulence in Verticillium dahliae. Fungal Genetics and Biology, 2016,88:13-23.
pmid: 26812120 |
[32] |
LI Z F, LIU Y J, FENG Z L, FENG H J, KLOSTERMAN S J, ZHOU F F, ZHAO L H, SHI Y Q, ZHU H Q. VdCYC8, encoding CYC8 glucose repression mediator protein, is required for microsclerotia formation and full virulence in Verticillium dahliae. PLoS ONE, 2015,10(12):e0144020.
doi: 10.1371/journal.pone.0144020 pmid: 26633180 |
[33] | 曹亚松, 王春生, 李海源, 徐小鸿, 商文静, 杨家荣, 胡小平. 大丽轮枝菌VdLac基因克隆与功能分析. 西北农业学报, 2018,27(2):275-282. |
CAO Y S, WANG C S, LI H Y, XU X H, SHANG W J, YANG J R, HU X P. Cloning and functional analysis of VdLac in Verticillium dahliae. Acta Agriculturae Boreali-Occidentalis Sinica, 2018,27(2):275-282. (in Chinese) |
[1] | 黄家权,李莉,吴丰年,郑正,邓晓玲. 携带不同原噬菌体的黄龙病菌在柑橘木虱体内的增殖及致病力[J]. 中国农业科学, 2022, 55(4): 719-728. |
[2] | 张晋龙,赵志博,刘巍,黄丽丽. 猕猴桃细菌性溃疡病菌T3SS关键效应蛋白基因致病功能[J]. 中国农业科学, 2022, 55(3): 503-513. |
[3] | 张承启,廖露露,齐永霞,丁克坚,陈莉. 禾谷镰孢核孔蛋白基因FgNup42的功能分析[J]. 中国农业科学, 2021, 54(9): 1894-1903. |
[4] | 曹钰晗,李紫腾,张静怡,张静娜,胡同乐,王树桐,王亚南,曹克强. 我国苹果斑点落叶病菌携带dsRNA分析及一种dsRNA病毒的鉴定[J]. 中国农业科学, 2021, 54(22): 4787-4799. |
[5] | 赵卫松,郭庆港,苏振贺,王培培,董丽红,胡卿,鹿秀云,张晓云,李社增,马平. 马铃薯健株与黄萎病株根际土壤真菌群落结构及其对碳源利用特征[J]. 中国农业科学, 2021, 54(2): 296-309. |
[6] | 赵静雅,夏荟清,彭梦雅,凡卓,殷悦,徐赛博,张楠,陈文波,陈琳琳. 假禾谷镰孢转录因子FpAPSES的鉴定与功能分析[J]. 中国农业科学, 2021, 54(16): 3428-3439. |
[7] | 张小雪,孙天歌,张迎春,陈丽华,张新宇,李艳军,孙杰. 大丽轮枝菌木糖苷酶基因的鉴定及基于HIGS技术的功能分析[J]. 中国农业科学, 2021, 54(15): 3219-3231. |
[8] | 赵卫松,郭庆港,李社增,王培培,鹿秀云,苏振贺,张晓云,马平. 花铃期棉花黄萎病抗病与感病品种对 土壤细菌群落结构的影响[J]. 中国农业科学, 2020, 53(5): 942-954. |
[9] | 王宝宝,郭成,孙素丽,夏玉生,朱振东,段灿星. 玉米穗腐病致病禾谷镰孢复合种的遗传多样性、致病力与毒素化学型分析[J]. 中国农业科学, 2020, 53(23): 4777-4790. |
[10] | 刘海洋, 王伟, 张仁福, 热西达·阿不都热合曼, 姚举. 黄萎病不同发生程度棉田土壤中的真菌群落特征分析[J]. 中国农业科学, 2019, 52(3): 455-465. |
[11] | 赵卫松,郭庆港,李社增,王亚娇,鹿秀云,王培培,苏振贺,张晓云,马平. 西兰花残体还田对棉花黄萎病防治效果及其对不同生育时期土壤细菌群落的影响[J]. 中国农业科学, 2019, 52(24): 4505-4517. |
[12] | 彭军波,李兴红,张玮,周莹,黄金宝,燕继晔. 葡萄溃疡病菌外泌蛋白LtGH61A的致病力及基因表达模式[J]. 中国农业科学, 2019, 52(24): 4518-4526. |
[13] | 梁颖博,李泽,邱德文,曾洪梅,李广悦,杨秀芬. 本生烟响应蛋白激发子PevD1的差异表达基因鉴定与分析[J]. 中国农业科学, 2019, 52(21): 3794-3805. |
[14] | 刘芮池,程有普,柴阿丽,石延霞,谢学文,帕提古丽,李宝聚. 蔬菜土传病原菌三重PCR检测体系的建立与应用[J]. 中国农业科学, 2019, 52(12): 2069-2078. |
[15] | 张一豪,冯鸿杰,袁媛,靳羽莹,师勇强,张朝军,李付广. 大丽轮枝菌弱致病力菌株Vd171对棉花黄萎病的诱导免疫作用及机制[J]. 中国农业科学, 2018, 51(6): 1067-1078. |
|