中国农业科学 ›› 2020, Vol. 53 ›› Issue (3): 612-631.doi: 10.3864/j.issn.0578-1752.2020.03.013
赵珊1,仲伶俐1,周虹1,李曦1,雷欣宇1,黄世群1,郑幸果1,冯俊彦2,雷绍荣1,郭灵安1()
收稿日期:
2019-06-27
接受日期:
2019-11-20
出版日期:
2020-02-01
发布日期:
2020-02-13
通讯作者:
郭灵安
作者简介:
赵珊,Tel:028-84504142;E-mail:zhaoshan11@126.com。
基金资助:
ZHAO Shan1,ZHONG LingLi1,ZHOU Hong1,LI Xi1,LEI XinYu1,HUANG ShiQun1,ZHENG XingGuo1,FENG JunYan2,LEI ShaoRong1,GUO LingAn1()
Received:
2019-06-27
Accepted:
2019-11-20
Online:
2020-02-01
Published:
2020-02-13
Contact:
LingAn GUO
摘要:
【目的】水稻是世界上最重要的作物之一,也是人们饮食中酚酸类营养成分的重要来源。建立稻米中酚酸类化合物鉴定与分析的超高效液相色谱-串联质谱(UPLC-MS/MS)检测方法,以深入了解和挖掘稻米的功能性营养。【方法】采用UPLC-MS/MS法对四川收集的白米、红米、紫米和黑米等14份材料中的19种酚酸进行定性和定量分析。优化碱水解、酸水解和净化萃取方法等前处理条件,同时优化色谱柱、流动相条件和质谱条件,并采用电喷雾电离和多反应监测模式进行检测。最后利用优化的分析方法分别测定糙米样品中的游离型、可溶性酯型、可溶性糖苷型、不溶性结合型和不溶性糖苷型酚酸的含量。【结果】通过对前处理条件的比对优化,获得的最优条件为:在含1%抗坏血酸和10 mmol·L -1 EDTA的2 mol·L -1 NaOH浓度下碱水解4 h,在1 mol·L -1 HCl溶液下酸水解1 h;所有净化萃取都使用含0.2% BHA的乙酸乙酯;采用HSS T3色谱柱,乙腈-0.01%甲酸水溶液为流动相进行梯度洗脱;除反式肉桂酸采用正离子模式,其余均为负离子模式,各化合物峰形好、分离度和灵敏度高。19种酚酸的线性范围良好(R 2≥0.9997),检出限在0.023—4.728 μg·L -1,定量限在0.076—15.759 μg·L -1。19种酚酸游离型酚酸提取回收率为55.3%—98.0%,18种酚酸(绿原酸除外)的碱水解和酸水解回收率分别为90.8%—103.1%、51.7%—100.3%。该方法测定的14份稻米中共鉴定出14种酚酸,定量的有12种,酚酸总含量范围为356.3—1 234.5 mg·kg -1,含量较高的有阿魏酸、原儿茶酸、香草酸、4-香豆酸、芥子酸和对羟基苯甲酸,其中原儿茶酸和香草酸主要存在于紫米和黑米中,主要为不溶性结合型、可溶性酯型和可溶性糖苷型酚酸。【结论】该方法准确且灵敏度高。在提取和测定过程中保护剂的加入能有效抑制酚酸的降解,增加游离型和糖苷型酚酸的鉴定与定量分析,能更精确、全面地呈现出稻米中酚酸的分布情况。
赵珊,仲伶俐,周虹,李曦,雷欣宇,黄世群,郑幸果,冯俊彦,雷绍荣,郭灵安. 超高效液相色谱-串联质谱法鉴定和分析稻米中 酚酸类化合物的组成及分布[J]. 中国农业科学, 2020, 53(3): 612-631.
ZHAO Shan,ZHONG LingLi,ZHOU Hong,LI Xi,LEI XinYu,HUANG ShiQun,ZHENG XingGuo,FENG JunYan,LEI ShaoRong,GUO LingAn. Identification and Analysis of Phenolic Acids in Rice Using Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Scientia Agricultura Sinica, 2020, 53(3): 612-631.
"
化合物名称 Compounds name | 英文名 English name | 分子式 Molecular formula | 分子量 Molecular weight | CAS登录号 CAS Number | 分子结构图 Molecular structure | 所属类别 Category |
---|---|---|---|---|---|---|
没食子酸 Gallic acid | 3,4,5-Trihydroxybenzoic acid | C7H6O5 | 170.1 | 149-91-7 | 羟基苯甲酸类 Hydroxybenzoic acids | |
2,3,4-三羟基苯甲酸 2,3,4-Trihydroxybenzoic acid | 1,2,3-Benzenetriol-4-carboxylic acid | C7H6O5 | 170.1 | 610-02-6 | ||
水杨酸 Salicylic acid | 2-Hydroxybenzoic acid | C7H6O3 | 138.1 | 69-72-7 | ||
3,5-二羟基苯甲酸 3,5-Dihydroxybenzoic acid | - | C7H6O4 | 154.1 | 99-10-5 | ||
原儿茶酸 Protocatechuic acid | 3,4-Dihydroxybenzoic acid | C7H6O4 | 154.1 | 99-50-3 | ||
龙胆酸 Gentisic acid | 2,5-Dihydroxybenzoic acid | C7H6O4 | 154.1 | 490-79-9 | ||
焦儿茶酸 Pyrocatechuic acid | 2,3-Dihydroxybenzoic acid | C7H6O4 | 154.1 | 303-38-8 | ||
化合物名称 Compounds name | 英文名 English name | 分子式 Molecular formula | 分子量 Molecular weight | CAS登录号 CAS Number | 分子结构图 Molecular structure | 所属类别 Category |
对羟基苯甲酸 p-Hydroxybenzoic acid | 4-Hydroxybenzoic acid | C7H6O3 | 138.1 | 99-96-7 | ||
香草酸 Vanillic acid | 4-Hydroxy-3-methoxybenzoic acid | C8H8O4 | 168.1 | 121-34-6 | ||
丁香酸 Syringic acid | 4-Hydroxy-3,5-dimethoxybenzoic acid | C9H10O5 | 198.2 | 530-57-4 | ||
绿原酸 Chlorogenic acid | 3-O-Caffeoylquinic acid | C16H18O9 | 354.3 | 327-97-9 | 咖啡酰奎宁酸类 Caffeoylquinic acids | |
咖啡酸 Caffeic acid | 3,4-Dihydroxycinnamic acid | C9H8O4 | 180.2 | 331-39-5 | 羟基肉桂酸类 Hydroxycinnamic acids | |
4-香豆酸 p-Coumaric acid | 4-Hydroxycinnamic acid | C9H8O3 | 164.2 | 501-98-4 | ||
阿魏酸 Ferulic acid | 4-Hydroxy-3-methoxycinnamic acid | C10H10O4 | 194.2 | 1135-24-6 | ||
3-羟基肉桂酸 3-Hydroxycinnamic acid | 3-Coumaric acid | C9H8O3 | 164.2 | 14755-02-3 | ||
芥子酸 Sinapic acid | 4-Hydroxy-3,5-dimethoxycinnamic acid | C11H12O5 | 224.2 | 530-59-6 | ||
异阿魏酸 Isoferulic acid | 3-Hydroxy-4-methoxycinnamic acid | C10H10O4 | 194.2 | 537-73-5 | ||
2-羟基肉桂酸 2-Hydroxycinnamic acid | 2-Coumaric acid | C9H8O3 | 164.2 | 614-60-8 | ||
反式肉桂酸 trans-Cinnamic acid | 3-Phenyl-2-propenoic acid | C9H8O2 | 148.2 | 140-10-3 |
表2
材料信息"
编号No. | 材料(品种)名称Material (variety) name | 类别Category | 采样地点Collected site |
---|---|---|---|
1 | 德香4103 Dexiang4103 | 籼稻/白米稻 Indica/white rice | 绵竹 Mianzhu |
2 | 桂朝2号 Guichao No.2 | 籼稻/白米稻 Indica/white rice | 绵竹 Mianzhu |
3 | 五山丝苗 Wushansimiao | 籼稻/白米稻 Indica/white rice | 绵竹 Mianzhu |
4 | 德优4727 Deyou4727 | 籼稻/白米稻 Indica/white rice | 绵竹 Mianzhu |
5 | 德粳6号 Dejing No.6 | 梗稻/白米稻 Japonica/white rice | 绵竹 Mianzhu |
6 | 川香优37 Chuanxiangyou37 | 籼稻/白米稻 Indica/white rice | 新都 Xindu |
7 | 川绿优188 Chuanlvyou188 | 籼稻/白米稻 Indica/white rice | 新都 Xindu |
8 | 黑香糯 Heixiangnuo | 黑米稻 Black rice | 广汉 Guanghan |
9 | 黑稻2号 Heidao No.2 | 黑米稻 Black rice | 广汉 Guanghan |
10 | 广汉黑米 Guanghan black rice | 黑米稻 Black rice | 广汉 Guanghan |
11 | 红宝石Rubine | 红米稻 Red rice | 广汉 Guanghan |
12 | 广汉红米 Guanghan red rice | 红米稻 Red rice | 广汉 Guanghan |
13 | 螺髻山红米 Luojishan red rice | 红米稻 Red rice | 普格 Puge |
14 | 紫米 Purple rice | 紫米稻 Purple rice | 遂宁 Suining |
表3
目标化合物的质谱分析参数"
酚酸 Phenolic acid | 保留时间 Retention time (min) | 质荷比Mass-to-charge ratio (m/z) | 锥孔电压 Cone voltage (V) | 碰撞能量Collision energy (eV) | 离子扫描模式 Ion scanning mode | |
---|---|---|---|---|---|---|
母离子 Parent ion | 子离子 Daughter ion | |||||
没食子酸Gallic acid | 1.89 | 168.90 | 124.91*、78.90 | 28 | 14,22 | 负离子 Negative ions |
2,3,4-三羟基苯甲酸 2,3,4-Trihydroxybenzoic acid | 2.87 | 168.90 | 150.94*、106.89 | 32 | 14,18 | 负离子Negative ions |
3,5-二羟基苯甲酸 3,5-Dihydroxybenzoic acid | 2.97 | 152.90 | 108.90*、64.97 | 14 | 12,12 | 负离子Negative ions |
原儿茶酸Protocatechuic acid | 3.24 | 152.90 | 108.90*、90.88 | 6 | 14,22 | 负离子Negative ions |
龙胆酸Gentisic acid | 4.64 | 152.90 | 108.90*、80.92 | 10 | 12,16 | 负离子Negative ions |
焦儿茶酸Pyrocatechuic acid | 4.65 | 152.90 | 108.90*、80.92 | 14 | 16,22 | 负离子Negative ions |
对羟基苯甲酸 p-Hydroxybenzoic acid | 4.69 | 136.90 | 92.89*、64.91 | 6 | 12,24 | 负离子Negative ions |
绿原酸Chlorogenic acid | 4.85 | 353.03 | 190.99*、84.88 | 18 | 20,40 | 负离子Negative ions |
香草酸Vanillic acid | 5.85 | 166.90 | 151.93*、107.92 | 8 | 12,22 | 负离子Negative ions |
咖啡酸Caffeic acid | 5.98 | 178.90 | 134.93*、106.88 | 27 | 16,24 | 负离子Negative ions |
丁香酸Syringic acid | 6.61 | 196.97 | 181.96*、122.89 | 18 | 14,24 | 负离子Negative ions |
4-香豆酸p-Coumaric acid | 8.97 | 162.97 | 118.92*、93.15 | 22 | 12,20 | 负离子Negative ions |
水杨酸Salicylic acid | 10.25 | 136.90 | 92.89*、64.91 | 16 | 14,22 | 负离子Negative ions |
阿魏酸Ferulic acid | 11.06 | 192.97 | 133.95*、177.95 | 14 | 18,12 | 负离子Negative ions |
3-羟基肉桂酸 3-Hydroxycinnamic acid | 11.49 | 162.97 | 118.92*、90.93 | 22 | 16,24 | 负离子Negative ions |
芥子酸Sinapic acid | 11.65 | 223.03 | 207.97*、163.93 | 16 | 14,16 | 负离子Negative ions |
异阿魏酸Isoferulic acid | 12.09 | 192.97 | 177.95*、133.96 | 6 | 12,14 | 负离子Negative ions |
2-羟基肉桂酸 2-Hydroxycinnamic acid | 13.64 | 162.97 | 119.18*、92.89 | 2 | 24,24 | 负离子Negative ions |
反式肉桂酸 trans-Cinnamic acid | 14.50 | 148.90 | 130.92*、102.94 | 38 | 10,18 | 正离子Positive ions |
表4
稻米样品在不同试验方法中添加酚酸的回收率结果(n=6)"
酚酸 Phenolic acid | 游离型提取Free type extraction (%) | 碱水解Alkaline hydrolysis (%) | 酸水解 Acid hydrolysis (%) | RSD (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HLB固相萃取法 HLB Solid-phase extraction | RSD (%) | 乙酸乙酯萃取法 Ethyl acetate extraction | RSD (%) | NaOH | RSD (%) | NaOH+1%抗坏血酸 NaOH+1% ascorbic acid | RSD (%) | NaOH +1%抗坏血酸+10 mmol∙L-1 EDTA NaOH +1% ascorbic acid+10 mmol∙L-1 EDTA | RSD (%) | |||
没食子酸Gallic acid | 96.3 | 2.95 | 75.7 | 0.83 | 0.0 | - | 87.4 | 4.79 | 92.1 | 2.11 | 73.5 | 2.47 |
2,3,4-三羟基苯甲酸 2,3,4-Trihydroxybenzoic acid | 92.6 | 1.93 | 95.4 | 2.02 | 0.0 | - | 86.9 | 3.41 | 94.5 | 1.80 | 86.9 | 0.66 |
3,5-二羟基苯甲酸 3,5-Dihydroxybenzoic acid | 102.1 | 0.20 | 86.7 | 4.65 | 95.2 | 2.81 | 97.2 | 1.65 | 97.5 | 0.79 | 96.5 | 0.61 |
原儿茶酸Protocatechuic acid | 100.3 | 1.39 | 88.2 | 0.01 | 0.0 | - | 95.1 | 0.98 | 98.8 | 1.99 | 92.1 | 2.05 |
龙胆酸Gentisic acid | 87.7 | 3.80 | 84.1 | 2.89 | 0.0 | - | 85.5 | 4.63 | 96.0 | 4.20 | 100.3 | 0.43 |
焦儿茶酸Pyrocatechuic acid | 93.1 | 2.20 | 84.3 | 2.81 | 0.0 | - | 91.9 | 5.88 | 103.0 | 0.24 | 99.8 | 0.81 |
对羟基苯甲酸 p-Hydroxybenzoic acid | 99.0 | 0.47 | 95.0 | 0.55 | 99.9 | 0.12 | 99.5 | 2.36 | 103.1 | 2.03 | 96.2 | 1.86 |
绿原酸Chlorogenic Acid | 89.9 | 1.01 | 55.3 | 3.98 | - | - | - | - | - | - | - | - |
香草酸Vanillic acid | 103.8 | 1.90 | 92.3 | 1.34 | 101.8 | 0.19 | 98.6 | 1.28 | 100.5 | 1.74 | 92.1 | 3.87 |
咖啡酸Caffeic acid | 90.2 | 0.59 | 93.1 | 2.53 | 0.0 | - | 92.9 | 1.50 | 100.1 | 1.64 | 64.1 | 1.63 |
丁香酸Syringic acid | 102.9 | 1.28 | 92.6 | 2.19 | 94.1 | 1.40 | 98.8 | 0.42 | 100.9 | 2.30 | 95.9 | 1.00 |
4-香豆酸p-Coumaric acid | 93.1 | 2.82 | 94.8 | 1.40 | 90.2 | 0.67 | 104.8 | 2.94 | 100.8 | 2.01 | 51.7 | 3.77 |
水杨酸Salicylic acid | 89.1 | 2.39 | 85.6 | 0.72 | 90.5 | 0.09 | 98.4 | 1.68 | 100.6 | 1.14 | 78.5 | 1.73 |
阿魏酸Ferulic acid | 97.5 | 3.00 | 98.0 | 1.05 | 84.4 | 1.61 | 110.5 | 0.12 | 103.1 | 0.28 | 52.3 | 3.55 |
3-羟基肉桂酸 3-Hydroxycinnamic acid | 98.1 | 0.95 | 91.8 | 2.49 | 97.8 | 1.18 | 100.0 | 3.15 | 100.9 | 2.42 | 92.5 | 1.64 |
芥子酸Sinapic acid | 85.3 | 4.03 | 88.3 | 4.67 | 6.9 | 34.0 | 101.4 | 1.11 | 101.9 | 3.35 | 62.2 | 3.03 |
异阿魏酸Isoferulic acid | 111.4 | 3.90 | 91.3 | 0.01 | 100.8 | 0.69 | 97.8 | 3.09 | 100.9 | 1.66 | 70.6 | 1.84 |
2-羟基肉桂酸 2-Hydroxycinnamic acid | 94.4 | 2.88 | 89.9 | 0.01 | 94.4 | 0.70 | 101.1 | 4.28 | 102.1 | 1.60 | 86.9 | 1.64 |
反式肉桂酸 trans-Cinnamic acid | 97.0 | 4.08 | 74.7 | 2.57 | 82.9 | 1.43 | 101.1 | 3.36 | 104.8 | 1.95 | 68.2 | 3.58 |
表5
19种酚酸的线性方程、相关系数、检出限和定量限"
酚酸 Phenolic acid | 线性范围 Linear range (μg·L-1) | 回归方程 Linear equation | 相关系数(R2) Correlation coefficient | 检出限 LOD (μg·L-1) | 定量限 LOQ (μg·L-1) |
---|---|---|---|---|---|
没食子酸Gallic acid | 1.0—500 | y=4129.01x+5097.625 | 0.99994 | 0.121 | 0.403 |
2,3,4-三羟基苯甲酸2,3,4-Trihydroxybenzoic acid | 1.0—500 | y=1181.706x+1184.094 | 0.99998 | 0.178 | 0.592 |
3,5-二羟基苯甲酸3,5-Dihydroxybenzoic acid | 1.0—500 | y=4200.251x+6932.746 | 0.99981 | 0.577 | 1.922 |
原儿茶酸Protocatechuic acid | 1.0—500 | y=5195.678x+4966.813 | 0.99998 | 0.221 | 0.735 |
龙胆酸Gentisic acid | 5.0—500 | y=1143.852x-5212.479 | 0.99974 | 4.728 | 15.759 |
焦儿茶酸Pyrocatechuic acid | 2.5—500 | y=1578.332 x-2815.838 | 0.99976 | 1.391 | 4.637 |
对羟基苯甲酸p-Hydroxybenzoic acid | 1.0—500 | y=8060.058x+89591.57 | 0.99999 | 0.023 | 0.076 |
绿原酸Chlorogenic Acid | 1.0—500 | y=3455.433x+915.729 | 0.99999 | 0.029 | 0.097 |
香草酸Vanillic acid | 1.0—250 | y=791.212x+5290.2 | 0.99993 | 0.060 | 0.201 |
咖啡酸Caffeic acid | 2.5—250 | y=9980.757x+29851.52 | 0.99962 | 1.799 | 5.995 |
丁香酸Syringic acid | 1.0—500 | y=1194.07x-734.952 | 0.99989 | 0.047 | 0.158 |
4-香豆酸p-Coumaric acid | 1.0—500 | y=11839.49x+4169.524 | 0.99999 | 0.144 | 0.479 |
水杨酸Salicylic acid | 1.0—500 | y=12668.42x-8192.132 | 0.99989 | 0.126 | 0.420 |
阿魏酸Ferulic acid | 1.0—500 | y=3638.813x-2875.187 | 0.99998 | 0.110 | 0.368 |
3-羟基肉桂酸3-Hydroxycinnamic acid | 1.0—500 | y=9461.071x+10025.18 | 0.99998 | 0.122 | 0.408 |
芥子酸Sinapic acid | 1.0—500 | y=2006.256x-2051.911 | 0.99998 | 0.050 | 0.167 |
异阿魏酸Isoferulic acid | 1.0—500 | y=929.839x-1868.854 | 0.99966 | 0.227 | 0.756 |
2-羟基肉桂酸2-Hydroxycinnamic acid | 1.0—500 | y=2820.271x+375.238 | 0.99999 | 0.457 | 1.522 |
反式肉桂酸trans-Cinnamic acid | 1.0—250 | y=3065.769x+3429.845 | 0.99973 | 0.293 | 0.976 |
表6
四川稻米样品中不同类型酚酸的含量及分布情况(n=3)"
酚酸 Phenolic acid | 类型 Type | 材料(品种)名称 Material (variety) name | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
五山丝苗 Wushansimiao | 德优4727 Deyou 4727 | 德粳6号 Dejing No.6 | 德香4103 Dexiang 4103 | 川绿优188 Chuanlvyou188 | 桂潮2号 Guichao No.2 | 川香优37 Chuanxiangyou37 | 螺髻山红米 Luojishan red rice | 红宝石 Rubine | 广汉红米 Guanghan red rice | 紫米 Purple rice | 黑香糯 Heixiangnuo | 广汉黑米 Guanghan black rice | 黑稻2号 Heidao No.2 | ||
样品水分 Sample moisture (%) | 8.28 | 7.89 | 8.33 | 8.85 | 7.94 | 7.91 | 8.10 | 8.11 | 7.60 | 8.31 | 12.5 | 7.95 | 8.09 | 7.73 | |
没食子酸 Gallic acid (mg∙kg-1) | 1 | 0.01±0.00 | TD | TD | 0.01±0.00 | 0.01±0.00 | TD | 0.01±0.00 | 0.01±0.00 | 0.01±0.00 | 0.01±0.00 | 0.06±0.00 | 0.06±0.00 | 0.06±0.00 | 0.10±0.01 |
2 | 0.46±0.01 | ND | ND | 1.31±0.04 | 0.05±0.01 | ND | 0.59±0.05 | 0.20±0.50 | ND | ND | ND | 0.06±0.07 | ND | 0.06±0.03 | |
3 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | |
4 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 0.26±0.02 | |
5 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | |
2,3,4-三羟基苯 甲酸 2,3,4- Trihydroxybenzoic acid (mg∙kg-1) | 1 | 0.01±0.00 | 0.01±0.00 | TD | TD | TD | 0.01±0.00 | TD | 0.01±0.00 | 0.02±0.00 | 0.02±0.00 | 0.34±0.06 | 1.71±0.32 | 1.89±0.21 | 4.73±0.41 |
2 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | |
3 | 0.51±0.04 | 0.61±0.07 | 0.52±0.04 | 0.50±0.02 | 0.51±0.06 | 0.50±0.01 | 0.52±0.02 | 0.47±0.02 | 0.49±0.09 | 0.57±0.02 | 0.67±0.02 | 0.74±0.12 | 0.73±0.01 | 0.79±0.09 | |
4 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | 0.06±0.06 | 0.20±0.03 | 0.08±0.03 | 0.45±0.04 | |
5 | 0.49±0.13 | 0.52±0.10 | 0.44±0.05 | 0.48±0.03 | 0.46±0.06 | 0.44±0.04 | 0.43±0.01 | ND | ND | ND | 0.49±0.01 | 0.40±0.04 | 0.47±0.06 | 0.46±0.02 | |
原儿茶酸 Protocatechuic acid (mg∙kg-1) | 1 | 0.06±0.00 | 0.05±0.00 | 0.06±0.00 | 0.05±0.00 | 0.05±0.00 | 0.06±0.00 | 0.05±0.00 | 3.24±0.02 | 3.35±0.02 | 6.42±0.16 | 27.37±0.61 | 20.81±0.21 | 21.36±0.47 | 24.70±2.44 |
2 | ND | ND | ND | ND | ND | ND | ND | 10.47±0.24 | 8.12±0.31 | 15.87±0.26 | 104.37±0.80 | 134.10±0.86 | 155.84±1.41 | 168.73±0.55 | |
3 | ND | ND | ND | ND | ND | ND | ND | 2.26±0.18 | 1.44±0.08 | 2.60±0.19 | 14.75±0.57 | 19.80±0.76 | 23.08±0.64 | 22.61±0.24 | |
4 | ND | ND | ND | ND | ND | ND | ND | 9.60±0.21 | 14.82±0.06 | 21.99±1.30 | 152.50±2.41 | 226.54±13.70 | 203.72±3.19 | 280.32±5.32 | |
5 | ND | ND | ND | ND | ND | ND | ND | 1.67±0.04 | 2.20±0.14 | 2.95±0.94 | 12.79±0.58 | 18.42±0.48 | 16.83±0.64 | 24.32±0.91 | |
对羟基苯甲酸 p-Hydroxybenzonic acid (mg∙kg-1) | 1 | 0.36±0.00 | 0.34±0.00 | 0.52±0.02 | 0.33±0.00 | 0.46±0.00 | 0.41±0.00 | 0.40±0.01 | 0.32±0.01 | 0.28±0.01 | 0.40±0.02 | 1.39±0.03 | 0.59±0.01 | 0.54±0.00 | 0.66±0.09 |
2 | 2.52±0.23 | 4.94±0.13 | 23.36±0.05 | 4.06±0.01 | 8.26±0.05 | 3.11±0.08 | 6.37±0.06 | 9.81±0.17 | 2.94±0.01 | 3.67±0.07 | 6.24±0.36 | 4.11±0.04 | 4.63±0.01 | 4.42±0.00 | |
3 | 7.75±0.50 | 19.13±0.06 | 52.23±0.64 | 15.41±0.19 | 27.03±1.05 | 11.21±0.44 | 23.08±0.51 | 28.27±0.22 | 6.91±0.24 | 6.98±0.46 | 9.63±0.22 | 5.72±0.30 | 6.57±0.07 | 7.31±0.24 | |
4 | 1.58±0.04 | 1.66±0.06 | 5.43±0.03 | 1.38±0.14 | 2.44±0.03 | 1.82±0.07 | 2.68±0.07 | 2.81±0.00 | 1.84±0.04 | 2.22±0.10 | 3.22±0.06 | 3.51±0.17 | 2.85±0.07 | 3.97±0.06 | |
5 | 1.02±0.08 | 1.80±0.05 | 6.10±0.07 | 1.71±0.13 | 2.81±0.06 | 1.55±0.08 | 2.79±0.09 | 4.72±0.03 | 1.49±0.01 | 1.83±0.16 | 2.49±0.02 | 0.99±0.04 | 1.21±0.14 | 1.54±0.07 | |
香草酸 Vanillic acid (mg∙kg-1) | 1 | 0.42±0.01 | 0.40±0.00 | 0.45±0.03 | 0.39±0.00 | 0.43±0.01 | 0.46±0.01 | 0.45±0.00 | 0.27±0.01 | 0.33±0.02 | 0.50±0.04 | 19.38±0.18 | 13.45±0.37 | 13.96±0.25 | 19.63±2.72 |
2 | 1.55±0.06 | 2.09±0.08 | 2.26±0.08 | 2.52±0.07 | 1.99±0.11 | 1.78±0.12 | 2.74±0.10 | 1.37±0.00 | 1.92±0.01 | 3.47±0.15 | 52.81±0.91 | 83.57±1.07 | 107.81±3.44 | 100.04±2.16 | |
3 | 2.52±0.19 | 3.59±0.17 | 3.23±0.11 | 4.39±0.05 | 3.92±0.04 | 3.67±0.13 | 4.88±0.21 | 2.73±0.08 | 2.92±0.09 | 3.73±0.01 | 13.04±0.10 | 21.73±0.91 | 23.96±0.36 | 21.64±0.80 | |
4 | 0.99±0.05 | 1.06±0.00 | 1.35±0.07 | 0.88±0.07 | 1.03±0.01 | 0.94±0.04 | 1.14±0.08 | 0.69±0.01 | 1.02±0.01 | 1.56±0.07 | 56.82±1.22 | 110.17±11.82 | 99.36±0.58 | 139.94±3.69 | |
5 | 0.81±0.02 | 0.86±0.03 | 1.01±0.01 | 0.90±0.05 | 0.96±0.10 | 0.88±0.01 | 0.97±0.01 | 0.85±0.02 | 1.02±0.02 | 1.27±0.07 | 6.97±0.04 | 10.39±0.62 | 9.89±0.21 | 10.72±0.10 | |
咖啡酸 Caffeic acid (mg∙kg-1) | 1 | 0.73±0.00 | 0.98±0.04 | 0.66±0.01 | 1.00±0.01 | 0.33±0.01 | 0.30±0.00 | 0.44±0.02 | 0.32±0.05 | 0.43±0.00 | 0.43±0.02 | 0.50±0.01 | 1.18±0.01 | 0.85±0.02 | 0.67±0.02 |
2 | 4.25±0.20 | 6.64±0.17 | 4.07±0.42 | 5.30±0.44 | 3.77±0.21 | 3.66±0.02 | 4.85±0.13 | 3.27±0.07 | 3.57±0.03 | 6.53±0.14 | 5.64±0.09 | 13.08±0.12 | 12.08±0.15 | 8.25±0.02 | |
3 | 2.17±0.23 | 3.97±0.39 | 2.77±0.16 | 4.01±0.08 | 2.59±0.21 | 2.54±0.01 | 2.96±0.07 | 1.67±0.08 | 2.63±0.13 | 2.54±0.14 | 2.61±0.12 | 4.34±0.05 | 3.44±0.04 | 3.88±0.12 | |
4 | 6.05±0.26 | 5.47±0.33 | 7.37±0.29 | 4.02±0.72 | 4.17±0.01 | 3.26±0.22 | 4.27±0.53 | 4.32±0.15 | 3.89±0.07 | 3.79±0.42 | 7.82±0.16 | 7.38±0.33 | 6.27±0.29 | 4.06±0.41 | |
5 | TD | TD | TD | TD | TD | TD | TD | TD | TD | TD | 0.84±0.01 | 0.61±0.03 | 0.76±0.08 | 0.78±0.01 | |
酚酸 Phenolic acid | 类型 Type | 材料(品种)名称 Material (variety) name | |||||||||||||
五山丝苗 Wushansimiao | 德优4727 Deyou 4727 | 德粳6号 Dejing No.6 | 德香4103 Dexiang 4103 | 川绿优188 Chuanlvyou188 | 桂潮2号 Guichao No.2 | 川香优37 Chuanxiangyou37 | 螺髻山红米 Luojishan red rice | 红宝石 Rubine | 广汉红米 Guanghan red rice | 紫米 Purple rice | 黑香糯 Heixiangnuo | 广汉黑米 Guanghan black rice | 黑稻2号 Heidao No.2 | ||
丁香酸 Syringic acid (mg∙kg-1) | 1 | 0.11±0.00 | 0.12±0.00 | 0.13±0.01 | 0.14±0.00 | 0.15±0.00 | 0.18±0.01 | 0.16±0.00 | 0.14±0.01 | 0.10±0.00 | 0.15±0.01 | 1.57±0.01 | 0.23±0.01 | 0.22±0.00 | 0.20±0.03 |
2 | 1.41±0.11 | 1.47±0.04 | 1.59±0.02 | 1.68±0.02 | 1.50±0.01 | 1.56±0.01 | 1.64±0.05 | 1.84±0.03 | 1.02±0.00 | 1.59±0.05 | 4.28±0.25 | 2.70±0.02 | 2.98±0.19 | 1.89±0.02 | |
3 | 0.26±0.02 | 0.35±0.04 | 0.38±0.01 | 0.40±0.01 | 0.39±0.01 | 0.39±0.01 | 0.41±0.01 | 0.55±0.02 | 0.17±0.02 | 0.32±0.03 | 0.35±0.02 | 0.44±0.02 | 0.50±0.03 | 0.38±0.02 | |
4 | 0.80±0.08 | 0.79±0.02 | 0.96±0.08 | 0.72±0.04 | 0.82±0.01 | 0.89±0.04 | 0.80±0.04 | 0.74±0.03 | 0.62±0.04 | 1.19±0.08 | 1.19±0.06 | 0.96±0.00 | 0.77±0.04 | 0.73±0.03 | |
5 | 0.18±0.02 | 0.19±0.01 | 0.22±0.01 | 0.17±0.01 | 0.18±0.02 | 0.23±0.01 | 0.19±0.02 | 0.17±0.00 | 0.15±0.01 | 0.22±0.08 | 0.20±0.00 | 0.17±0.02 | 0.15±0.01 | 0.13±0.00 | |
4-香豆酸 p-Coumaric acid (mg∙kg-1) | 1 | 0.62±0.01 | 0.67±0.01 | 1.38±0.07 | 0.62±0.00 | 0.62±0.02 | 0.84±0.01 | 0.57±0.01 | 1.14±0.07 | 0.70±0.02 | 0.93±0.05 | 2.95±0.07 | 0.35±0.01 | 0.41±0.01 | 0.30±0.04 |
2 | 3.69±0.69 | 3.89±0.26 | 11.97±2.76 | 3.51±0.18 | 4.30±0.49 | 5.10±0.30 | 3.77±0.14 | 13.01±1.13 | 8.95±0.81 | 6.79±0.41 | 9.21±0.21 | 5.82±0.21 | 6.99±0.02 | 4.79±0.16 | |
3 | 0.85±0.07 | 1.53±0.14 | 3.20±0.05 | 1.16±0.02 | 1.95±0.07 | 1.10±0.04 | 1.60±0.04 | 1.83±0.02 | 1.05±0.02 | 0.95±0.04 | 1.20±0.05 | 0.73±0.01 | 0.83±0.01 | 0.71±0.03 | |
4 | 61.26±0.21 | 55.60±0.16 | 72.13±3.97 | 38.24±3.31 | 51.68±0.03 | 45.91±0.20 | 43.15±2.90 | 75.53±0.83 | 91.74±1.48 | 83.21±5.40 | 29.68±4.17 | 17.71±2.68 | 17.92±0.19 | 25.50±1.93 | |
5 | 0.76±0.15 | 0.85±0.16 | 1.12±0.06 | 0.59±0.00 | 0.93±0.05 | 0.71±0.03 | 0.72±0.03 | 1.02±0.06 | 1.41±0.01 | 1.52±0.05 | 0.72±0.05 | 0.43±0.01 | 0.41±0.03 | 0.40±0.01 | |
水杨酸 Salicylic acid (mg∙kg-1) | 1 | 0.19±0.00 | 0.19±0.00 | 0.35±0.03 | 0.19±0.01 | 0.17±0.00 | 0.16±0.00 | 0.20±0.00 | 0.24±0.02 | 0.37±0.01 | 0.46±0.01 | 1.01±0.01 | 0.21±0.01 | 0.25±0.00 | 0.32±0.07 |
2 | 0.88±0.01 | 0.90±0.00 | 1.54±0.04 | 0.85±0.10 | 0.71±0.01 | 0.67±0.03 | 0.79±0.02 | 0.99±0.07 | 1.62±0.13 | 1.68±0.10 | 1.98±0.12 | 1.17±0.09 | 1.32±0.07 | 1.93±0.07 | |
3 | 3.96±0.26 | 5.72±0.08 | 6.25±0.03 | 4.43±0.06 | 4.73±0.31 | 3.31±0.02 | 3.68±0.10 | 5.36±0.13 | 6.53±0.50 | 6.86±0.15 | 2.95±0.07 | 3.84±0.21 | 4.29±0.23 | 5.84±0.33 | |
4 | ND | ND | 0.16±0.00 | ND | 0.12±0.08 | TD | ND | 0.05±0.02 | 0.05±0.06 | 0.07±0.01 | 0.11±0.05 | ND | ND | 0.01±0.00 | |
5 | 0.52±0.07 | 0.78±0.01 | 1.12±0.02 | 0.66±0.06 | 0.62±0.09 | 0.52±0.01 | 0.45±0.03 | 0.85±0.01 | 0.85±0.01 | 1.01±0.19 | 0.75±0.04 | 0.38±0.01 | 0.45±0.06 | 0.43±0.11 | |
阿魏酸 Ferulic acid (mg∙kg-1) | 1 | 1.85±0.02 | 2.00±0.01 | 3.71±0.20 | 2.43±0.03 | 2.80±0.05 | 3.12±0.01 | 3.49±0.08 | 3.09±0.25 | 2.01±0.02 | 1.81±0.13 | 7.31±0.13 | 2.45±0.02 | 2.09±0.03 | 2.22±0.30 |
2 | 17.59±2.03 | 20.29±2.54 | 36.31±7.82 | 19.72±0.80 | 29.07±0.50 | 33.02±4.49 | 23.72±0.20 | 48.63±1.04 | 24.69±1.34 | 29.65±1.44 | 35.15±0.96 | 36.41±1.88 | 49.66±5.59 | 30.42±2.38 | |
3 | 6.15±0.45 | 8.41±0.84 | 12.66±0.09 | 9.15±0.27 | 12.95±0.45 | 7.91±0.32 | 9.62±0.11 | 8.24±0.08 | 7.35±0.06 | 7.47±0.24 | 6.92±0.21 | 5.28±0.02 | 5.80±0.03 | 4.78±0.25 | |
4 | 154.49±3.27 | 180.16±5.45 | 240.69±2.93 | 153.75±13.16 | 179.00±2.17 | 184.74±7.25 | 175.56±10.56 | 208.43±0.63 | 158.46±0.25 | 191.68±7.32 | 274.44±14.66 | 213.68±14.68 | 248.27±9.31 | 152.52±1.60 | |
5 | 3.55±0.44 | 3.79±0.22 | 4.55±0.22 | 3.30±0.02 | 4.25±0.11 | 3.46±0.04 | 3.48±0.10 | 4.25±0.25 | 4.48±0.05 | 5.21±0.29 | 5.21±0.14 | 3.16±0.32 | 3.23±0.11 | 3.58±0.02 | |
芥子酸 Sinapic acid (mg∙kg-1) | 1 | 0.28±0.00 | 0.15±0.00 | 0.21±0.01 | 0.22±0.00 | 0.22±0.00 | 0.31±0.00 | 0.23±0.00 | 0.35±0.02 | 0.25±0.00 | 0.19±0.01 | 1.32±0.03 | 0.28±0.01 | 0.27±0.00 | 0.26±0.03 |
2 | 28.22±1.44 | 33.27±5.12 | 44.58±0.00 | 32.37±1.78 | 59.81±0.35 | 65.49±1.84 | 44.94±1.57 | 71.36±2.17 | 43.50±0.68 | 35.78±1.97 | 52.64±1.02 | 48.62±0.41 | 63.15±4.86 | 40.70±2.04 | |
3 | 2.03±0.23 | 2.60±0.41 | 5.94±0.44 | 3.21±0.15 | 3.82±0.16 | 5.04±0.23 | 3.14±0.00 | 3.35±0.02 | 3.45±0.18 | 2.15±0.14 | 2.58±0.11 | 1.92±0.01 | 2.27±0.07 | 1.79±0.01 | |
4 | 2.50±0.22 | 3.49±0.10 | 5.15±0.09 | 3.51±0.61 | 4.38±0.25 | 5.31±0.35 | 3.69±0.14 | 6.35±0.06 | 5.55±0.01 | 5.58±0.50 | 9.54±0.43 | 3.14±0.12 | 3.87±0.29 | 3.34±0.06 | |
5 | 0.30±0.05 | 0.44±0.01 | 0.71±0.02 | 0.39±0.03 | 0.45±0.03 | 0.57±0.01 | 0.37±0.01 | 0.45±0.01 | 0.51±0.01 | 0.46±0.02 | 0.76±0.02 | 0.24±0.00 | 0.30±0.01 | 0.32±0.01 | |
反式肉桂酸 trans-Cinnamic acid (mg∙kg-1) | 1 | 0.05±0.00 | 0.01±0.00 | 0.07±0.01 | 0.01±0.01 | ND | ND | 0.05±0.02 | 0.02±0.01 | 0.02±0.01 | 0.04±0.00 | ND | 0.01±0.00 | ND | ND |
2 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | |
3 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | |
4 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | |
5 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
[1] | DENG G F, XU X R, ZHANG Y, LI D, GAN R Y, LI H B . Phenolic compounds and bioactivities of pigmented rice. Critical Reviews in Food Science and Nutrition, 2013,53(3):296-306. |
[2] | MIN B, MCCLUNG A M, CHEN M H . Phytochemicals and antioxidant capacities in rice brans of different color. Journal of Food Science, 2011,76(1):C117-C126. |
[3] | HUDSON E A, DINH P A, KOKUBUN T, SIMMONDS M S, GESCHER A . Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiology and Prevention Biomarkers, 2000,9(11):1163-1170. |
[4] | GOUFO P, TRINDADE H . Rice antioxidants: Phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, gamma-oryzanol, and phytic acid. Food Science & Nutrition, 2014,2(2):75-104. |
[5] | FARDET A, ROCK E, RÉMÉSY C . Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? Journal of Cereal Science, 2008,48(2):258-276. |
[6] | GOUFO P, PEREIRA J, MOUTINHO PEREIRA J, CORREIA C M, FIGUEIREDO N, CARRANCA C, ROSA E A S, TRINDADE H. Rice (Oryza sativa L.) phenolic compounds under elevated carbon dioxide (CO2) concentration. Environmental and Experimental Botany, 2014,99:28-37. |
[7] | KLICK S, HERRMANN K . Glucosides and glucose esters of hydroxybenzoic acids in plants. Phytochemistry, 1988,27(7):2177-2180. |
[8] | WINTER M, HERRMANN K . Esters and glucosides of hydroxycinnamic acids in vegetables. Journal of Agricultural and Food Chemistry, 1986,34(4):616-620. |
[9] | ROBBINS R J . Phenolic acids in foods: An overview of analytical methodology. Journal of Agricultural and Food Chemistry, 2003,51(10):2866-2887. |
[10] | MORTON L W, ABU-AMSHA CACCETTA R, PUDDEY I B, CROFT K D . Chemistry and biological effects of dietary phenolic compounds: relevance to cardiovascular disease. Clinical and Experimental Pharmacology and Physiology, 2000,27(3):152-159. |
[11] | GOUFO P, PEREIRA J, FIGUEIREDO N OLIVEIRA M B P, CARRANCA C, ROSA E A, TRINDADE H. , Effect of elevated carbon dioxide (CO2) on phenolic acids, flavonoids, tocopherols, tocotrienols, γ-oryzanol and antioxidant capacities of rice (Oryza sativa L.). Journal of Cereal Science, 2014,59(1):15-24. |
[12] | DENG G F, XU X R, GUO Y J, XIA E Q, LI S, WU S, CHEN F, LING W H, LI H B . Determination of antioxidant property and their lipophilic and hydrophilic phenolic contents in cereal grains. Journal of Functional Foods, 2012,4(4):906-914. |
[13] | IRAKLI M N, SAMANIDOU V F, BILIADERIS C G, PAPADOYANNIS I N . Simultaneous determination of phenolic acids and flavonoids in rice using solid-phase extraction and RP-HPLC with photodiode array detection. Journal of Separation Science, 2012,35(13):1603-1611. |
[14] | SOMPONG R, SIEBENHANDL-EHN S, LINSBERGER-MARTIN G, BERGHOFER E . Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chemistry, 2011,124(1):132-140. |
[15] | VICHAPONG J, SOOKSERM M, SRIJESDARUK V, SWATSITANG P, SRIJARANAI S . High performance liquid chromatographic analysis of phenolic compounds and their antioxidant activities in rice varieties. LWT-Food Science and Technology, 2010,43(9):1325-1330. |
[16] | ZHOU Z K, ROBARDS K, HELLIWELL S, BLANCHARD C . The distribution of phenolic acids in rice. Food Chemistry, 2004,87(3):401-406. |
[17] | TIAN S, NAKAMURA K, KAYAHARA H . Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. Journal of Agricultural and Food Chemistry, 2004,52(15):4808-4813. |
[18] | HARUKAZE A, MURATA M, HOMMA S . Analyses of free and bound phenolics in rice. Food Science and Technology Research, 1999,5(1):74-79. |
[19] | SHAO Y F, HU Z Q, YU Y H, MOU R X, ZHU Z W, BETA T . Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice. Food Chemistry, 2018,239:733-741. |
[20] | DING C, LIU Q, LI P, PEI Y S, TAO T T, WANG Y, YAN W, YANG G F, SHAO X L . Distribution and quantitative analysis of phenolic compounds in fractions of Japonica and Indica rice. Food Chemistry, 2019,274:384-391. |
[21] | 周虹 . 四川省水稻产业现状及发展对策. 四川农业科技, 2015(9):46-48. |
ZHOU H . Current status and development countermeasures of rice industry in Sichuan province. Sichuan Agricultural Science and Technology, 2015(9):46-48. (in Chinese) | |
[22] | BUNEA A, ANDJELKOVIC M, SOCACIU C, BOBIS O, NEACSU M, VERH R, VAN CAMP J . Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chemistry, 2008,108(2):649-656. |
[23] | ESCARPA A, GONZÁLEZ M C . Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Analytica Chimica Acta, 2001,427(1):119-127. |
[24] | GRANATO D, SHAHIDI F, WROLSTAD R, KILMARTIN P, MELTON L D, HIDALGO F J, MIYASHITA K, VAN CAMP J, ALASALVAR C, ISMAIL A B, ELMORE S, BIRCH G G, CHARALAMPOPOULOS D, ASTLEY S B, PEGG R, ZHOU P, FINGLAS P . Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chemistry, 2018,264:471-475. |
[25] | MATTILA P, KUMPULAINEN J . Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. Journal of Agricultural and Food Chemistry, 2002,50(13):3660-3667. |
[26] | DA SILVA PADILHA C V, MISKINIS G A, DE SOUZA M E A O, PEREIRA G E, DE OLIVEIRA D, BORDIGNON-LUIZ M T, DOS SANTOS LIMA M . Rapid determination of flavonoids and phenolic acids in grape juices and wines by RP-HPLC/DAD: Method validation and characterization of commercial products of the new Brazilian varieties of grape. Food Chemistry, 2017,228:106-115. |
[27] | JIAO Y, KILMARTIN P A, FAN M T, QUEK S Y . Assessment of phenolic contributors to antioxidant activity of new kiwifruit cultivars using cyclic voltammetry combined with HPLC. Food Chemistry, 2018,268:77-85. |
[28] | ZHANG L Q, LI Y, LIANG Y, LIANG K H, ZHANG F, XU T, WANG M M, SONG H X, LIU X J, LU B Y . Determination of phenolic acid profiles by HPLC-MS in vegetables commonly consumed in China. Food Chemistry, 2019,276:538-546. |
[29] | PÉREZ-NAVARRO J, IZQUIERDO-CAÑAS P M, MENA-MORALES A, MARTÍNEZ-GASCUEÑA J, CHACÓN-VOZMEDIANO J L, GARCÍA-ROMERO E, HERMOSÍN-GUTIÉRREZ I, GÓMEZ- ALONSO S . Phenolic compounds profile of different berry parts from novel Vitis vinifera L. red grape genotypes and Tempranillo using HPLC-DAD-ESI-MS/MS: A varietal differentiation tool. Food Chemistry, 2019,295:350-360. |
[30] | GRUZ J, NOVÁK O, STRNAD M. Rapid analysis of phenolic acids in beverages by UPLC-MS/MS. Food Chemistry, 2008,111(3):789-794. |
[31] | THOMAS M, BADR A, DESJARDINS Y, GOSSELIN A, ANGERS P . Characterization of industrial broccoli discards (Brassica oleracea var. italica) for their glucosinolate, polyphenol and flavonoid contents using UPLC MS/MS and spectrophotometric methods. Food Chemistry, 2018,245:1204-1211. |
[32] | GAO Y, WANG M, JIANG N, WANG Y, FENG X Y . Use of ultra-performance liquid chromatography-tandem mass spectrometry on sweet cherries to determine phenolic compounds in peel and flesh. Journal of the Science of Food and Agriculture, 2019,99(7):3555-3562. |
[33] | 马帅, 王纪华, 高媛, 王蒙, 冯晓元 . 超高效液相色谱-串联质谱法同时测定5个产地花椰菜和西兰花中的23种酚酸类化合物. 食品科学, 2018,39(4):176-187. |
MA S, WANG J H, GAO Y, WANG M, FENG X Y . Simultaneous determination of twenty-three phenolic acids in cauliflower (Brassica oleracea L. var. botrytis L.) and broccoli (B. oleracea L. var. italica) from five producing places by ultra performance liquid chromatography- tandem mass spectrometry. Food Science, 2018,39(4):176-187. (in Chinese) | |
[34] | 张娜, 王国祥, Abacar Jose Daniel, 刘正辉, 丁承强, 唐设, 李刚华, 王绍华, 丁艳锋 . 超高效液相色谱法分析稻米酚酸化合物组分及其含量. 中国农业科学, 2015,48(9):1718-1726. |
ZHANG N, WANG G X, ABACAR J D, LIU Z H, DING C Q, TANG S, LI G H, WANG S H, DING Y F . Determination of phenolic acids in rice by ultra-high performance liquid chromatography. Scientia Agricultura Sinica, 2015,48(9):1718-1726. (in chinese) | |
[35] | AYAZ F A, HAYIRLIOGLU-AYAZ S, GRUZ J, NOVAK O, STRNAD M . Separation, characterization, and quantitation of phenolic acids in a little-known blueberry (Vaccinium arctostaphylos L.) fruit by HPLC-MS. Journal of Agricultural and Food Chemistry, 2005,53(21):8116-8122. |
[36] | XU G H, YE X Q, LIU D H, MA Y Q, CHEN J C . Composition and distribution of phenolic acids in Ponkan (Citrus poonensis Hort. ex Tanaka) and Huyou (Citrus paradisi Macf. Changshanhuyou) during maturity. Journal of Food Composition and Analysis, 2008,21(5):382-389. |
[37] | NARDINI M, CIRILLO E, NATELLA F, MENCARELLI D, COMISSO A, SCACCINI C . Detection of bound phenolic acids: Prevention by ascorbic acid and ethylenediaminetetraacetic acid of degradation of phenolic acids during alkaline hydrolysis. Food Chemistry, 2002,79(1):119-124. |
[38] | ESCARPA A, GONZÁLEZ M C. Total extractable phenolic chromatographic index: An overview of the phenolic class contents from different sources of foods. European Food Research and Technology, 2001,212(4):439-444. |
[39] | JULKUNEN-TIITTO R . Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. Journal of Agricultural and Food Chemistry, 1985,33(2):213-217. |
[40] | YU J, VASANTHAN T, TEMELLI F . Analysis of phenolic acids in barley by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 2001,49(9):4352-4358. |
[41] | KRYGIER K, SOSULSKI F, HOGGE L . Free, esterified, and insoluble-bound phenolic acids. 1. Extraction and purification procedure. Journal of Agricultural and Food Chemistry, 1982,30(2):330-334. |
[42] | MAILLARD M N, BERSET C . Evolution of antioxidant activity during kilning: role of insoluble bound phenolic acids of barley and malt. Journal of Agricultural and Food Chemistry, 1995,43(7):1789-1793. |
[43] | 邵雅芳 . 稻米酚类化合物的鉴定、分布、遗传与相关基因的表达研究[D]. 杭州: 浙江大学, 2014. |
SHAO Y F . Polyphenols in rice (Oryza sativa L.): Identification, distribution, genetics and gene expression[D]. Hangzhou: Zhejiang University, 2014. ( in Chinese) | |
[44] | BOURNE L C, RICE-EVANS C . Bioavailability of ferulic acid. Biochemical and Biophysical Research Communications, 1998,253(2):222-227. |
[45] | BOURNE L, PAGANGA G, BAXTER D, HUGHES P, RICE-EVANs C . Absorption of ferulic acid from low-alcohol beer. Free Radical Research, 2000,32(3):273-280. |
[46] | MANACH C, WILLIAMSON G, MORAND C, SCALBERT A, RÉMÉSY C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition, 2005,81(1):230S-242S. |
[47] | MANACH C, SCALBERT A, MORAND C, RÉMÉSY C, JIMENEZ L. Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition, 2004,79(5):727-747. |
[48] | ZHAO Z H, EGASHIRA Y, SANADA H . Ferulic acid sugar esters are recovered in rat plasma and urine mainly as the sulfoglucuronide of ferulic acid. The Journal of nutrition, 2003,133(5):1355-1361. |
[49] | ADAM A, CRESPY V, LEVRAT-VERNY M A, LEENHARDT F, LEUILLET M, DEMIGNÉ C, RÉMÉSY C. The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. The Journal of Nutrition, 2002,132(7):1962-1968. |
[50] | SUMCZYNSKI D, KOTÁSKOVÁ E, DRUŽBÍKOVÁ H, MLČEK J. Determination of contents and antioxidant activity of free and bound phenolics compounds and in vitro digestibility of commercial black and red rice (Oryza sativa L.) varieties. Food Chemistry, 2016,211:339-346. |
[51] | LIU L, GUO J J, ZHANG R F, WEI Z C, DENG Y Y, GUO J X, ZHANG M W . Effect of degree of milling on phenolic profiles and cellular antioxidant activity of whole brown rice. Food Chemistry, 2015,185:318-325. |
[52] | BUTSAT S, SIRIAMORNPUN S . Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice. Food Chemistry, 2010,119(2):606-613. |
[53] | MIN B, GU L W, MCCLUNG A M, BERGMAN C J, CHEN M H . Free and bound total phenolic concentrations, antioxidant capacities, and profiles of proanthocyanidins and anthocyanins in whole grain rice (Oryza sativa L.) of different bran colours. Food Chemistry, 2012,133(3):715-722. |
[54] | NACZK M, SHAHIDI F . Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis, 2006,41(5):1523-1542. |
[1] | 冯向前,殷敏,王孟佳,马横宇,褚光,刘元辉,徐春梅,章秀福,张运波,王丹英,陈松. 南方稻区“早籼晚粳”栽培模式晚季灌浆期气象因子对晚粳稻品质的影响[J]. 中国农业科学, 2023, 56(1): 46-63. |
[2] | 闫乐乐,卜璐璐,牛良,曾文芳,鲁振华,崔国朝,苗玉乐,潘磊,王志强. 广泛靶向代谢组学解析桃蚜危害对桃树次生代谢产物的影响[J]. 中国农业科学, 2022, 55(6): 1149-1158. |
[3] | 郭保卫,唐闯,王岩,蔡嘉鑫,唐健,周苗,景秀,张洪程,许轲,胡雅杰,邢志鹏,李国辉,陈恒. 两种机械化种植方式对优质晚籼稻产量和品质的影响[J]. 中国农业科学, 2022, 55(20): 3910-3925. |
[4] | 夏芊蔚,陈浩,姚宇阗,笪达,陈健,石志琦. “优标”水稻体系对稻田土壤环境的影响[J]. 中国农业科学, 2022, 55(17): 3343-3354. |
[5] | 孟轶,翁文安,陈乐,胡群,邢志鹏,魏海燕,高辉,黄山,廖萍,张洪程. 节水灌溉对水稻产量和品质影响的荟萃分析[J]. 中国农业科学, 2022, 55(11): 2121-2134. |
[6] | 韩展誉,吴春艳,许艳秋,黄福灯,熊义勤,管弦悦,周庐建,潘刚,程方民. 不同施氮水平下灌浆期高温对水稻贮藏蛋白积累及其合成代谢影响[J]. 中国农业科学, 2021, 54(7): 1439-1454. |
[7] | 熊若愚,解嘉鑫,谭雪明,杨陶陶,潘晓华,曾勇军,石庆华,张俊,才硕,曾研华. 不同灌溉方式对南方优质食味晚籼稻产量及品质的影响[J]. 中国农业科学, 2021, 54(7): 1512-1524. |
[8] | 鲁晓峰,杜国栋,邵静,张静茹,孙海龙. 草莓根系线粒体对外源酚酸胁迫的生理响应[J]. 中国农业科学, 2021, 54(5): 1029-1042. |
[9] | 张桂云,朱静雯,孙明法,严国红,刘凯,宛柏杰,代金英,朱国永. 盐胁迫条件下长白10号水稻籽粒中差异代谢物的分析[J]. 中国农业科学, 2021, 54(4): 675-683. |
[10] | 周亮,肖峰,肖欢,张玉盛,敖和军. 施用石灰降低污染稻田上双季稻镉积累的效果[J]. 中国农业科学, 2021, 54(4): 780-791. |
[11] | 王雅慧, 刘晓宏, 雍明丽, 熊爱生, 苏小俊. 基于代谢组学分析丝瓜果肉褐变过程酚酸类物质变化[J]. 中国农业科学, 2021, 54(22): 4869-4879. |
[12] | 杨陶陶,解嘉鑫,黄山,谭雪明,潘晓华,曾勇军,石庆华,张俊,曾研华. 花后增温对双季晚粳稻产量和稻米品质的影响[J]. 中国农业科学, 2020, 53(7): 1338-1347. |
[13] | 马雯,刘娇,张学尧,申国华,秦雪梅,张建琴. 飞蝗LmGSTS2的酶学特性及其对马拉硫磷、 p,p’-DDT的代谢分析[J]. 中国农业科学, 2019, 52(8): 1389-1399. |
[14] | 盛月凡,王海燕,乔鈜元,王玫,陈学森,沈向,尹承苗,毛志泉. 不同土壤质地对平邑甜茶幼苗连作障碍程度的影响[J]. 中国农业科学, 2019, 52(4): 715-724. |
[15] | 索德成,魏书林,肖志明,王培龙,王瑞国,李阳. 液相色谱-串联质谱法同时测定饲用血液制品中 18种β-受体激动剂[J]. 中国农业科学, 2019, 52(24): 4613-4623. |
|