[1] Wang X, Proud C G. Nutrient control of TORC1, a cell-cycle regulator. Trends in Cell Biology, 2009, 19(6): 260-267.
[2] Howell J J, Ricoult S J H, Ben-Sahra I, Manning B D. A growing role for mTOR in promoting anabolic metabolism. Biochemical Society Transactions, 2013, 41(4): 906-912.
[3] Dunlop E A, Tee A R. Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cell Signalling, 2009, 21(6): 827-835.
[4] Kim D H, Sarbassov D D, Ali S M, Latek R R, Guntur K V, Erdjument-Bromage H, Tempst P, Sabatini D M. GbetaL, a positive regulator of the rapamycin sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Molecular Cell, 2003, 11(4): 895-904.
[5] Kim D H, Sarbassov D D, Ali S M, King J E, Latek R R, Erdjument-Bromage H, Tempst P, Sabatini D M. mTOR interacts with raptor to form a nutrientsensitive complex that signals to the cell growth machinery. Cell, 2002, 110(2): 163-175.
[6] Peterson T R, Laplante M, Thoreen C C, Sancak Y, Kang S A, Kuehl W M, Gray N S, Sabatini D M. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell, 2009, 137(5): 873-886.
[7] Huang J, Manning B D. A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochemical Society Transactions, 2009, 37(Pt 1): 217-222.
[8] Dibble C C, Manning B D. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nature Cell Biology, 2013, 15(6): 555-564.
[9] Chantranupong L, Wolfson R L, Sabatini D M. Nutrient-sensing mechanisms across evolution. Cell, 2015, 161(1): 67-83.
[10] Wellen K E, Thompson C B. Cellular metabolic stress: considering how cells respond to nutrient excess. Molecular Cell, 2010, 40(2): 323-332.
[11] Yuan H X, Xiong Y, Guan K L. Nutrient sensing, metabolism, and cell growth control. Molecular Cell, 2013, 49(3): 379-387.
[12] Menon S, Dibble C C, Talbott G, Hoxhaj G, Valvezan A J, Takahashi H, Cantley L C, Manning B D. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell, 2014, 156(4): 771-785.
[13] Kim S G, Buel G R, Blenis J. Nutrient regulation of the mTOR complex 1 signaling pathway. Moleculars and Cells, 2013, 35(6): 463-473.
[14] Huang K, Fingar D C. Growing knowledge of the mTOR signaling network. Seminars in Cell & Developmental Biology, 2014, 36(12): 79-90.
[15] Sengupta S, Peterson T R, Sabatini D M. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Molecular Cell, 2010, 40(2): 310-322.
[16] Tan J. Amino Acid Intricacy. Cell, 2015, 160(4): 575.
[17] Wang X, Proud C G. mTORC1 signaling: what we still don't know. Journal of Molecular Cell Biology, 2011, 3(4): 206-220.
[18] Proud C G. A new link in the chain from amino acids to mTORC1 activation. Molecular Cell, 2011, 44(1): 7-8.
[19] Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N. Amino acid regulation of TOR complex 1. American Journal of Physiology-Endocrinology and Metabolism, 2009, 296(4): E592-602.
[20] Zhou H Y, Huang S L. The complexes of mammalian target of rapamycin. Current Protein & Peptide Science, 2010, 11(6): 409–424.
[21] Jewell J L, Russell R C, Guan K L. Amino acid signaling upstream of mTOR. Nature Reviews Molecular Cell Biology, 2013, 14(3): 133-139.
[22] Kim J, Guan K L. Amino acid signaling in TOR activation. Annual Review of Biochemistry, 2011, 80: 1001-1032.
[23] Laplante M, Sabatini D M. mTOR signaling in growth control and disease. Cell, 2012, 149(2): 274-293.
[24] Goberdhan D C, Ogmundsdóttir M H, Kazi S. Amino acid sensing and mTOR regulation: inside or out? Biochemical Society Transactions, 2009, 37(Pt 1): 248-252.
[25] Abraham R T. Making sense of amino acid sensing. Science, 2015, 347(6218): 128-129.
[26] Kim E, Goraksha-Hicks P, Li L. Regulation of TORC1 by Rag GTPases in nutrient response. Nature Cell Biology, 2008, 10(8): 935-945.
[27] Sancak Y, Peterson T R, Shaul Y D. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science, 2008, 320(5882): 1496-1501.
[28] Sancak Y, Sabatini D M. Rag proteins regulate amino-acid-induced mTORC1 signalling. Biochemical Society Transactions, 2009, 37(Pt 1): 289-290.
[29] Groenewoud M J, Zwartkruis F J. Rheb and Rags come together at the lysosome to activate mTORC1. Biochemical Society Transactions, 2013, 41(4): 951-955.
[30] Suzuki T, Inoki K. Spatial regulation of the mTORC1 system in amino acids sensing pathway. Acta Biochim Biophys Sin (Shanghai), 2011, 43(9): 671-679.
[31] Ögmundsdóttir M H, Heublein S, Kazi S, Reynolds B, Visvalingam S M, Shaw M K, Goberdhan D C. Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes. PLoS One, 2012; 7(5): e36616.
[32] Tsun Z Y, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C, Spooner E, Sabatini D M. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Molecular Cell, 2013, 52(4): 495-505.
[33] Demetriades C, Doumpas N, Teleman A A. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell, 2014, 156(4): 786-799.
[34] Sancak Y, Bar-Peled L, Zoncu R, Markhard A L, Nada S, Sabatini D M. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell, 2010, 141(2): 290-303.
[35] Jin G, Lee S W, Zhang X, Cai Z, Gao Y, Chou P C, Rezaeian A H, Han F, Wang C Y, Yao J C, Gong Z, Chan C H, Huang C Y, Tsai F J, Tsai C H, Tu S H, Wu C H, Sarbassov dos D, Ho Y S, Lin H K. Skp2-Mediated RagA Ubiquitination Elicits a Negative Feedback to Prevent Amino-Acid-Dependent mTORC1 Hyperactivation by Recruiting GATOR1. Molecular Cell, 2015, 58(6): 989-1000.
[36] Deng L, Jiang C, Chen L, Jin J, Wei J, Zhao L, Chen M, Pan W, Xu Y, Chu H, Wang X, Ge X, Li D, Liao L, Liu M, Li L, Wang P. The ubiquitination of rag A GTPase by RNF152 negatively regulates mTORC1 activation. Molecular Cell, 2015, 58(5): 804-818.
[37] Jewell J L, Kim Y C, Russell R C, Yu F X, Park H W, Plouffe S W, Tagliabracci V S, Guan K L. Differential regulation of mTORC1 by leucine and glutamine. Science, 2015, 347(6218): 194-198.
[38] Bar-Peled L, Schweitzer L D, Zoncu R, Sabatini D M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell, 2012, 150(6): 1196-1208.
[39] Bar-Peled L, Sabatini D M. Regulation of mTORC1 by amino acids. Trends in Cell Biology, 2014, 24(7): 400-406.
[40] Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini D M. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H (+)-ATPase. Science, 2011, 334(6056): 678-683.
[41] Xie X S, Padron D, Liao X, Wang J, Roth M G, De Brabander J K. Salicylihalamide A inhibits the V0 sector of the V-ATPase through a mechanism distinct from bafilomycin A1. Journal of Biological Chemistry, 2004, 279(19): 19755-19763.
[42] Wang S, Tsun Z Y, Wolfson R L, Shen K, Wyant G A, Plovanich M E, Yuan E D, Jones T D, Chantranupong L, Comb W, Wang T, Bar-Peled L, Zoncu R, Straub C, Kim C, Park J, Sabatini B L, Sabatini D M. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science, 2015, 347(6218): 188-194.
[43] Rebsamen M, Pochini L, Stasyk T, de Araújo M E, Galluccio M, Kandasamy R K, Snijder B, Fauster A, Rudashevskaya E L, Bruckner M, Scorzoni S, Filipek P A, Huber K V, Bigenzahn J W, Heinz L X, Kraft C, Bennett K L, Indiveri C, Huber L A, Superti-Furga G. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature, 2015, 519(7544): 477-481.
[44] Fingar D C. Rag Ubiquitination Recruits a GATOR1: Attenuation of Amino Acid-Induced mTORC1 Signaling. Molecular Cell, 2015, 58(5): 713-715.
[45] Parmigiani A, Nourbakhsh A, Ding B, Wang W, Kim Y C, Akopiants K, Guan K L, Karin M, Budanov A V. Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Reports, 2014, 9(4): 1281-1291.
[46] Chantranupong L, Wolfson R L, Orozco J M, Saxton R A, Scaria S M, Bar-Peled L, Spooner E, Isasa M, Gygi S P, Sabatini D M. The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Reports, 2014, 9(1): 1-8.
[47] Han J M, Jeong S J, Park M C, Kim G, Kwon N H, Kim H K, Ha S H, Ryu S H, Kim S. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell, 2012, 149(2): 410-424.
[48] Averous J, Lambert-Langlais S, Carraro V, Gourbeyre O, Parry L, B'Chir W, Muranishi Y, Jousse C, Bruhat A, Maurin A C, Proud C G, Fafournoux P. Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids. Cell Signalling, 2014, 26(9): 1918-1927.
[49] Laufenberg L J, Pruznak A M, Navaratnarajah M, Lang C H. Sepsis-induced changes in amino acid transporters and leucine signaling via mTOR in skeletal muscle. Amino Acids, 2014, 46(12): 2787-2798.
[50] Durán R V, Oppliger W, Robitaille A M, Heiserich L, Skendaj R, Gottlieb E, Hall M N. Glutaminolysis activates Rag-mTORC1 signaling. Molecular Cell, 2012, 47(3): 349-358.
[51] Yan L, Mieulet V, Burgess D, Findlay G M, Sully K, Procter J, Goris J, Janssens V, Morrice N A, Lamb R F. PP2A T61 epsilon is an inhibitor of MAP4K3 in nutrient signaling to mTOR. Molecular Cell, 2010, 37(5): 633-642.
[52] Duran A, Amanchy R, Linares J F, Joshi J, Abu-Baker S, Porollo A, Hansen M, Moscat J, Diaz-Meco M T. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Molecular Cell, 2011, 44(1): 134-146.
[53] Moscat J, Diaz-Meco M T. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell, 2009, 137(6): 1001-1004.
[54] Wauson E M, Zaganjor E, Lee A Y, Guerra M L, Ghosh A B, Bookout A L, Chambers C P, Jivan A, McGlynn K, Hutchison M R, Deberardinis R J, Cobb M H. The G protein-coupled taste receptor T1R1/T1R3 regulates mTORC1 and autophagy. Molecular Cell, 2012, 47(6): 851-862.
[55] Linares J F, Duran A, Yajima T, Pasparakis M, Moscat J, Diaz-Meco M T. K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells. Molecular Cell, 2013, 51(3): 283-296.
[56] Kim Y M, Kim D H. dRAGging amino acid-mTORC1 signaling by SH3BP4. Molecules and Cells, 2013, 35(1): 1-6.
[57] Schweitzer L D, Comb W C, Bar-Peled L, Sabatini D M. Disruption of the Rag-Ragulator Complex by c17orf59 Inhibits mTORC1. Cell Reports, 2015, 12(9): 1445-1455. |