[1]Smith O S, Smith J S, Bowen S L, Tenborg R A, Wall S J. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis, and RFLPs. Theoretical and Applied Genetics, 1990, 80: 833-840.
[2]Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823-839.
[3]Zhang Q, Gao Y J, Yang S H, Ragab R A, Saghai Maroof M A, Li Z B. Diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites. Theoretical and Applied Genetics, 1994, 89: 185-192.
[4]Zhang Q F, Gao Y J, Saghai Maroof M A, Yang S H, Li J X. Molecular divergence and hybrid performance in rice. Molecular Breeding, 1995, 1(2): 133-142.
[5]Zhang Q, Zhou Z Q, Yang G P, Xu C G, Liu K D, Saghai Maroof M A. Molecular marker heterozygosity and hybrid performance in indica and japonica rice. Theoretical and Applied Genetics, 1996, 93: 1218-1224.
[6]Xiao J, Li J, Yuan L, McCouch S R, Tanksley S D. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theoretical and Applied Genetics, 1996, 92(6): 637-643.
[7]Martin J M, Talbert L E , Lanning S P, Blake N K. Hybrid performance in wheat s related to parental diversity. Crop Science, 995, 35: 104-108.
[8]Diers B W, Mcvetty P B, Osborn T C. Relationship between heterosis and genentic distance based on restiriction fragment length polymer phism markers in oilseed rape (Brassica napus L.). Crop Science, 1996, 36: 79-83.
[9]Lee M, Godshalk E B, Lamkey K R, Woodman W W. Association of restriction fragment length polymorphisms among maize inbreds with agronomic performance of their crosses. Crop Science, 1989, 29(4): 1067-1071.
[10]蔡健, 兰伟. AFLP标记与水稻杂种产量及产量杂种优势的预测. 中国农学通报, 2005, 21(4): 39-43.
Cai J, Lan W. Using of AFLP marker to predict the hybrid yield and yield heterosis in rice. Chinese Agricultural Science Bulletin, 2005, 21(4): 39-43. (in Chinese)
[11]吴敏生, 王守才, 戴景瑞. RAPD分子标记与玉米杂种产量预测的研究. 遗传学报, 1999, 26(5): 578-584.
Wu M S, Wang S C, Dai J R. RAPD marker studies in predicting the heterosis of F1 yield in maize (Zea mays L.). Acta Genetica Sinica, 1999, 26(5): 578-584. (in Chinese)
[12]袁力行, 傅骏骅, 刘新芝, 彭泽斌, 张世煌, 李新海, 李连城. 利用分子标记预测玉米杂种优势的研究. 中国农业科学, 2000, 33(6): 6-12.
Yuan L X, Fu J H, Liu X Z, Peng Z B, Zhang S H, Li X H, Li L C. Study on prediction of heterosis in maize(Zea mays L.) using the molecular marker. Scientia Agricultura Sinica, 2000, 33(6): 6-12. (in Chinese)
[13]Saghai Maroof M A, Yang G P, Zhang Q, Gravois K A. Correlation between molecular marker distance and hybrid performance in US southern long grain rice. Crop Science, 1997, 37: 145-150.
[14]韦新宇, 许旭明, 张受刚, 卓伟, 马彬林, 杨腾帮, 杨旺兴, 邹文广, 范祖军. 籼粳交恢复系产量相关性状的遗传方差与杂种优势分析. 三明农业科技, 2010, 118(3): 2-5.
Wei X Y, Xu X M. Zhang S G, Zhuo W, Ma B L, Yang T B, Yang W X, Zou W G, Fan Z J. Genetic variance and heterosis in yield related traits of restorer lines of indica-japonica rice crosses. Sanming Agricultural Science and Technology, 2010, 118(3): 2-5. (in Chinese)
[15]Melchinger A E, Lee M, Lamkey K R, Hallauer A R, Woodman W L. Genetic diversity for RFLP: Relation to estimated genetic effect in maize inbreds. Theoretical and Applied Genetics, 1990, 80: 488-496.
[16]何光华, 侯磊, 李德谋, 罗小英, 牛国清, 唐梅, 裴炎. 利用分子标记预测杂交水稻产量及其构成因素. 遗传学报, 2002, 29(5): 438-444.
He G H, Hou L, Li D M, Luo X Y, Niu G Q, Tang M, Pei Y. Prediction of yield and yield components in hybrid rice by using molecular markers. Acta Genetica Sinica, 2002, 29(5): 438-444. (in Chinese)
[17]卢瑶, 凌英华, 杨正林, 陈春燕, 钟秉强, 何光华. 用二组法和三组法预测杂交稻米直链淀粉和蛋白质含量. 农业生物技术学报, 2008, 16(2): 309-314.
Lu Y, Ling Y H, Yang Z L, Chen C Y, Zhong B Q, He G H. Prediction of amylose and protein contents of indica rice by two-group method and three-group method. Journal of Agricultural Biotechnology, 2008, 16(2): 309-314. (in Chinese)
[18]查仁明, 桑贤春, 赵芳明, 凌英华, 罗洪发, 李云峰. AFLP增效和减效位点预测杂交水稻产量性状模型构建. 中国农学通报, 2010, 26(11): 18-22.
Zha R M, Sang X C, Zhao F M, Ling Y H, Luo H F, Li Y F. Foundation of predictive model of hybrid yield traits in rice (Oryza sativa L.) with effect-increasing and effect-decreasing loci of AFLP. Chinese Agricultural Science Bulletin, 2010, 26(11): 18-22. (in Chinese)
[19]查仁明, 杨正林, 赵芳明, 桑贤春, 凌英华, 谢戎, 何光华. 分子标记遗传效应预测杂交水稻产量性状. 植物遗传资源学报, 2010, 11(1): 72-77.
Zha R M, Yang Z L, Zhao F M, Sang X C, Ling Y H, Xie R, He G H. Prediction of F1 yield using genetic effects of molecular marker in indica rice(Oryza sativa L.). Journal of Plant Genetic Resources, 2010, 11(1): 72-77. (in Chinese)
[20]Bernardo R. Relationship between single-cross performance and molecular marker heterozygosity. Theoretical and Applied Genetics, 1992, 83: 628-634.
[21]吴敏生, 戴景瑞. AFLP标记与玉米杂种产量、产量杂种优势的预测. 植物学报, 2000, 42(6): 600-604.
Wu M S, Dai J R. Using of AFLP marker to predict the hybrid yield and yield heterosis in maize (Zea mays L.). Acta Botanica Sinica, 2000, 42(6): 600-604. (in Chinese)
[22]孙其信, 倪中福, 陈希勇, 刘志勇, 黄铁城. 冬小麦部分基因杂合性与杂种优势表达. 中国农业大学学报, 1997, 2(1): 64-116.
Sun Q X, Ni Z F, Chen X Y, Liu Z Y, Huang T C. Partial genome heterozygosity and heterosis in winter wheat. Journal of China Agricultural University, 1997, 2(1): 64-116. (in Chinese)
[23]Lin H X, Qian H R, Zhuang J Y, Lu J, Min S K, Xiong Z M, Huang N, Zheng K L. RFLP mapping of QTLs for yield and related characters in rice (Oryza sariva L.). Theoretical and Applied Genetics, 1996, 92: 920-927.
[24]Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Molecular Biology, 1997, 35: 145-153.
[25]包劲松, 何平, 夏英武, 陈英, 朱立煌. 不同发育阶段水稻苗高的QTL分析. 遗传, 1999, 21(5): 38-40.
Bao J S, He P, Xia Y W, Chen Y, Zhu L H. Mapping QTLs for rice seedling height at different developmental stages. Hereditas, 1999, 21(5): 38-40. (in Chinese)
[26]廖春燕, 吴平, 易可可, 胡彬, 倪俊健. 不同遗传背景及环境中水稻穗长的QTLs和上位性分析. 遗传学报, 2000, 27(7): 599-607.
Liao C Y, Wu P, Yi K K, Hu B, Ni J J. QTLs and epistasis underlying rice (Oryza sariva L.) panicle length in different genetic background and environments. Acta Genetica Sinica, 2000, 27(7): 599-607. (in Chinese)
[27]陈深广, 沈希宏, 曹立勇, 占小登, 冯跃, 吴伟明, 程式华. 水稻产量性状杂种优势的QTL定位. 中国农业科学, 2010, 43(24): 4983-4990.
Chen S G, Shen X H, Cao L Y, Zhan X D, Feng Y, Wu W M, Cheng S H. QTL mapping for heterosis of yield traits in rice. Scientia Agricultura Sinica, 2010, 43(24): 4983-4990. (in Chinese)
[28]Tanksley S D. Mapping polygenes. Annual Review of Genetics, 1993, 27: 205-233.
[29]Xiao J H, Li J M, Yuan L P, Tanksley S D. Dominance is the major genetic basis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995, 140(2): 745-754.
[30]吴晓林. 用分子标记预测植物和动物杂种优势的研究[D]. 长沙: 湖南农业大学, 2000.
Wu X L. Predicting heterosis using DNA markers in plant and animal species [D]. Changsha: Hunan Agriculture University, 2000. (in Chinese)
[31]徐建龙, 薛庆中, 罗利军, 黎志康. 水稻单株有效穗和每穗粒数的QTL剖析. 遗传学报, 2001, 28(8): 752-759.
Xu J L, Xue Q Z, Luo L J, Li Z K. QTL dissection of panicle number per plant and spikelet number per panicle in rice (Oryza sariva L.). Acta Genetica Sinica, 2001, 28(8): 752-759. (in Chinese)
[32]郑景生, 江良荣, 曾健敏, 林文雄, 李义珍. 应用明恢86和佳辐占的F2群体定位水稻部分重要农业性状和产量构成的QTL. 分子植物育种, 2003, 1(5/6): 633-639.
Zheng J S, Jiang L R, Zeng J M, Lin W X, Li Y Z. QTL analysis of heading date, plant height and yield components in F2 population derived from Minghui 86xJiafuzhan. Molecular Plant Breeding, 2003, 1(5/6): 633-639. (in Chinese)
[33]Zhou Y, Li W, Wu W, Chen Q, Mao D, Worland A J. Genetic dissection of heading time and its components in rice. Theoretical and Applied Genetics, 2001, 102: 1236-1242. |