[1]刘琼光, 张庆, 魏楚丹. 水稻细菌性基腐病研究进展. 中国农业科学, 2013, 46(14): 2923-2931.Liu Q G, Zhang Q, Wei C D. Advances in research of rice bacterial foot rot. Scientia Agricultura Sinica, 2013, 46(14): 2923-2931. (in Chinese)[2]Lindgren P B. The role of hrp genes during plant-bacterial interactions. Annual Review of Phytopathology, 1997, 35: 129-152.[3]López-Solanilla E, Llama-Palacios A, Collmer A, García-Olmedo F, Rodríguez-Palenzuela P. Relative effects on virulence of mutations in the sap, pel, and hrp loci of Erwinia chrysanthemi. Molecular Plant-Microbe Interactions, 2001, 14(3): 386-393.[4]Yang C H, Gavilanes-Ruiz M, Okinaka Y, Vedel R, Berthuy I, Boccara M, Chen J W, Perna N T, Keen N T. hrp genes of Erwinia chrysanthemi 3937 are important virulence factors. Molecular Plant-Microbe Interactions, 2002, 15(5): 472-480.[5]Bauer D W, Bogdanove A J, Beer S V, Collmer A. Erwinia chrysanthemi hrp genes and their involvement in soft rot pathogenesis and elicitation of the hypersensitive response. Molecular Plant- Microbe Interactions, 1994, 7(5): 573-581.[6]Bauer D W, Wei Z M, Beer S V, Collmer A. Erwinia chrysanthemi harpinEch: an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Molecular Plant-Microbe Interactions, 1995, 8(4): 484-491.[7]Yang S, Perna N T, Cooksey D A, Okinaka Y, Lindow S E, Ibekwe A M, Keen N T, Yang C H. Genome-wide identification of plant- upregulated genes of Erwinia chrysanthemi 3937 using a GFP-based IVET leaf array. Molecular Plant-Microbe Interactions, 2004, 17(9): 999-1008.[8]Wei Z, Kim J F, Beer S V. Regulation of hrp genes and type III protein secretion in Erwinia amylovora by HrpX/HrpY, a novel two- component system, and HrpS. Molecular Plant-Microbe Interactions, 2000,13(11): 1251-1262.[9]Lehtimaki S, Rantakari A, Routtu J, Tuikkala A, Li J, Virtaharju O, Palva E T, Romantschuk M, Saarilahti H T. Characterization of the hrp pathogenicity cluster of Erwinia carotovora subsp. carotovora: high basal level expression in a mutant is associated with reduced virulence. Molecular Genetic and Genomics, 2003, 270(3): 263-272.[10]Nizan-Koren R, Manulis S, Mor H, Iraki N M, Baras I. The regulatory cascade that activates the Hrp regulon in Erwinia herbicola pv. gypsophilae. Molecular Plant-Microbe Interactions, 2003, 16(3): 249-260.[11]Merighi M, Majerczak D R, Stover E H, Coplin D L. The HrpX/HrpY two-component system activates hrpS expression, the first step in the regulatory cascade controlling the Hrp regulon in Pantoea stewartii subsp. stewartii. Molecular Plant-Microbe Interactions, 2003, 16(3): 238-248.[12]Yap M N, Yang C H, Charkowski A O. The response regulator HrpY of Dickeya dadantii 3937 regulates virulence genes not linked to the hrp cluster. Molecular Plant-Microbe Interactions, 2008, 21(3): 304-314.[13]Chatterjee A, Cui Y, Chatterjee A K. Regulation of Erwinia carotovora hrpLEcc (sigma-LEcc), which encodes an extracytoplasmic function subfamily of sigma factor required for expression of the HRP regulon. Molecular Plant-Microbe Interactions, 2002, 15(9): 971-980.[14]Yap M N, Yang C H, Barak J D, Jahn C E, Charkowski A O. The Erwinia chrysanthemi type III secretion system is required for multicellular behavior. Journal of Bacteriology, 2005, 187(2): 639-648.[15]Yang S, Peng Q, Francisco M S, Wang Y, Zeng Q, Yang C H. Type III secretion system genes of Dickeya dadantii 3937 are induced by plant phenolic acids. PLoS One, 2008, 3(8): e2973.[16]Zou L F, Li Y R, Chen G Y. A non-marker mutagenesis strategy to generate poly-hrp gene mutants in the rice pathogen Xanthomonas oryzae pv. oryzicola. Agricultural Sciences in China, 2011, 10(8): 1139-1150.[17]Chatterjee A, Cui Y, Liu Y, Dumenyo C K, Chatterjee A K. Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)- L-homoserine lactone. Applied and Environmental Microbiology, 1995, 61(5): 1959-1967.[18]Zhou J, Zhang H, Wu J, Liu Q, Xi P, Lee J, Liao J, Jiang Z, Zhang L H. A novel multidomain polyketide synthase is essential for zeamine production and the virulence of Dickeya zeae. Molecular Plant- Microbe Interactions, 2011, 24(10): 1156-1164.[19]Shen Y, Chern M, Silva F G, Ronald P. Isolation of a Xanthomonas oryzae pv. oryzae flagellar operon region and molecular characterization of flhF. Molecular Plant-Microbe Interactions, 2001, 14(2): 204-213.[20]Wei C F, Deng W L, Huang H C. A chaperone-like HrpG protein acts as a suppressor of HrpV in regulation of the Pseudomonas syringae pv. syringae type III secretion system. Molecular Microbiology, 2005, 57(2): 520-536.[21]Wengelnik K, Bonas U. HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. Journal of Bacteriology, 1996, 178(12): 3462-3469.[22]Wengelnik K, Van den Ackerveken G, Bonas U. HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two-component response regulators. Molecular Plant-Microbe Interactions, 1996, 9(8): 704-712.[23]Wengelnik K, Rossier O, Bonas U. Mutations in the regulatory gene hrpG of Xanthomonas campestris pv. vesicatoria result in constitutive expression of all hrp genes. Journal of Bacteriology, 1999, 181(21): 6828-6831.[24]Zou L F, Wang X P, Xiang Y, Zhang B, Li Y R, Xiao Y L, Wang J S, Walmsley A R, Chen G Y. Elucidation of the hrp clusters of Xanthomonas oryzae pv. oryzicola that control the hypersensitive response in nonhost tobacco and pathogenicity in susceptible host rice. Applied and Environmental Microbiology, 2006, 72(9): 6212-6224.[25]Kim T J, Young B M, Young G M. Effect of flagellar mutations on Yersinia enterocolitica biofilm formation. Applied and Environmental Microbiology, 2008, 74(17): 5466-5474.[26]Liang Y, Gao H, Chen J, Dong Y, Wu L, He Z, Liu X, Qiu G, Zhou J. Pellicle formation in Shewanella oneidensis. BMC Microbiology, 2010, 10: 291.[27]Tans-Kersten J, Brown D, Allen C. Swimming motility, a virulence trait of Ralstonia solanacearum, is regulated by FlhDC and the plant host environment. Molecular Plant-Microbe Interactions, 2004, 17(6): 686-695.[28]Bayot R G, Ries S M. Role of motility in apple blossom infection by Erwinia amylovora and studies of fire blight control with attractant and repellent compounds. Phytopathology, 1986, 76: 441-445.[29]Hattermann D R, Ries S M. Motility of Pseudomonas syringae pv. glycinea and its role in infection. Phytopathology, 1989, 79: 284-289.[30]Taguchi F, Shimizu R, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y. Post-translational modification of flagellin determines the specificity of HR induction. Plant Cell Physiology, 2003, 44(3): 342-349.[31]Yang S, Peng Q, Zhang Q, Yi X, JaeChoi C, Reedy R M, Charkowski A O, Yang C H. Dynamic regulation of GacA in type III secretion, pectinase gene expression, pellicle formation, and pathogenicity of Dickeya dadantii (Erwinia chrysanthemi 3937). Molecular Plant-Microbe Interactions, 2008, 21(1): 133-142.[32]West A H, Stock A M. Histidine kinases and response regulator proteins in two-component signaling systems. Trends in Biochemical Sciences, 2001, 26(6): 369-376.[33]Skerker J M, Prasol M S, Perchuk B S, Biondi E G, Laub M T. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biology, 2005, 3(10): e334.[34]Ninfa A J. Use of two-component signal transduction systems in the construction of synthetic genetic networks. Current Opinion of Microbiology, 2010, 13(2): 240-245. |