[1]Bais H P, Fall R, Vivanco J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology, 2004, 134(1): 307-319.
[2]Broggini G A L, Duffy B, Holliger E, Scharer H J, Gessler C, Patocchi A. Detection of the fire blight biocontrol agent Bacillus subtilis BD170 (Biopro®) in a Swiss apple orchard. European Journal of Plant Pathology, 2005, 111(2): 93-100.
[3]Chen X H, Scholz R, Borriss M, Junge H, Mogel G, Kunz S, Borriss R. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. Journal of Biotechnology, 2009, 140(1/2): 38-44.
[4]Liu Y F, Chen Z Y, Ng T B, Zhang J, Zhou M G, Song F P, Lu F, Liu Y Z. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides, 2007, 28(3): 553-559.
[5]Leifert C, Li H, Chidburee S, Hampson S, Workman S, Sigee D, Epton H A S, Harbour A. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. Journal of Applied Microbiology, 1995, 78(2): 97-108.
[6]Moyne A L, Shelby R, Cleveland T E, Tuzun S. Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus. Journal of Applied Microbiology, 2001, 90(4): 622-629.
[7]Stein T. Bacillus subtilis antibiotics: structures, synthese and specific functions. Molecular Microbiology, 2005, 56(4): 845-857.
[8]Chen X H, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter A W, Gottschalk G, Sussmuth R D, Borriss R. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB42. Journal of Bacteriology, 2006, 188(11): 4024-4036.
[9]Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Applied Microbiology and Biotechnology, 2005, 69(1): 29-38.
[10]Zeriouh H, Romero D, García-Gutiérrez L, Cazorla F M, de Vicente A, Pérez-García A. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Molecular Plant-Microbe Interactions, 2011, 24(12): 1540-1552.
[11]Ongena M, Adam A, Jourdan E, Paquot M, Brans A, Joris B, Arpigny J L, Thonart P. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 2007, 9(4): 1084-1090.
[12]Jourdan E, Henry G, Duby F, Dommes J, Barthelemy J P, Thonart P, Ongena M. Insights into the defense-related events occuring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Molecular Plant-Microbe Interactions, 2009, 22(4): 456-468.
[13]Henry G, Deleu M, Jourdan E, Thonart P, Ongena M. The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cellular Microbiology, 2011, 13(11): 1824-1837.
[14]张荣胜, 刘永锋, 陈志谊. 水稻细菌性条斑病菌拮抗细菌的筛选、评价与应用研究. 中国生物防治, 2011, 27(4): 510-514.
Zhang R S, Liu Y F, Chen Z Y. Screening, evaluation and utilization of antagonistic bacteria against Xanthomonas oryzae pv. oryzicola. Chinese Journal of Biological Control, 2011, 27(4): 510-514. (in Chinese)
[15]高学文, 姚仕义, Pham H, Vater J, 王金生. 基因工程枯草芽孢杆菌GEB3产生的脂肽类抗生素及生物活性的研究. 中国农业科学, 2003, 36(12): 1496-1501.
Gao X W, Yao S Y, Pham H, Vater J, Wang J S. Lipopeptide antibiotics produced by the engineered strain Bacillus subtilis GEB3 and detection of its bioactivity. Scientia Agricultura Sinica, 2003, 36(12): 1496-1501. (in Chinese)
[16]Koumoutsi A, Chen X H, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R. Strain FZB42 Bacillus amyloliquefaciens in synthesis of bioactive cyclic lipopeptides of gene clusters directing nonribosomal structural and functional characterization. Journal of Bacteriology, 2004, 186(4): 1084-1096.
[17]Kunst F, Rapoport G. Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. Journal of Bacteriology, 1995, 177(9): 2403-2407.
[18]Vater J, Gao X W, Hitzeroth G, Wilde C, Franke P. “Whole cell”-matrix-assisted laser desorption ionization-time of flight-mass spectrometry, an emerging technique for efficient screening of biocombinatorial libraries of natural compounds-present state of research. Combinatorial Chemistry & High Throughput Screening, 2003, 6(6): 557-567.
[19]何美玉. 现代有机与生物质谱. 北京: 北京大学出版社, 2002.
He M Y. Modern Organic and Biological Mass Spectrometry. Beijing: Beijing University Press, 2002. (in Chinese)
[20]Kopp F, Marahiel M A. Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. Natural Product Reports, 2007, 24: 735-749.
[21]Raaijmakers J M, Vlami M, De Souza J T. Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek, 2002, 81(1/4): 537-547. |