[1] |
GUO M, YIN Y X, JI J J, MA B P, LU M H, GONG Z H. Cloning and expression analysis of heat-shock transcription factor gene CaHsfA2 from pepper (Capsicum annuum L.). Genetics and Molecular Research, 2014, 13(1): 1865-1875.
|
[2] |
LI T, XU X W, LI Y, WANG H M, LI Z L, LI Z X. Comparative transcriptome analysis reveals differential transcription in heat- susceptible and heat-tolerant pepper (Capsicum annum L.) cultivars under heat stress. Journal of Plant Biology, 2015, 58(6): 411-424.
|
[3] |
LIU F, XI M W, LIU T, WU X Y, JU L Y, WANG D J. The central role of transcription factors in bridging biotic and abiotic stress responses for plants’ resilience. New Crops, 2024, 1: 100005.
|
[4] |
姚晓琳, 张晓芳, 王铮, 郝俊莹, 郑荣繁, 张沿政, 李帅. 大豆MADS-box基因功能研究进展. 植物遗传资源学报, 2024, 25(6): 909-918.
doi: 10.13430/j.cnki.jpgr.20231028001
|
|
YAO X L, ZHANG X F, WANG Z, HAO J Y, ZHENG R F, ZHANG Y Z, LI S. Research progress on MADS-box gene function in soybean. Journal of Plant Genetic Resources, 2024, 25(6): 909-918. (in Chinese)
|
[5] |
ADHIKARI P B, KASAHARA R D. An overview on MADS box members in plants: A meta-review. International Journal of Molecular Sciences, 2024, 25(15): 8233.
|
[6] |
ROY CHOUDHURY S, ROY S, NAG A, SINGH S K, SENGUPTA D N. Characterization of an AGAMOUS-like MADS box protein, a probable constituent of flowering and fruit ripening regulatory system in banana. PLoS ONE, 2012, 7(9): e44361.
|
[7] |
GOGOI M, BORCHETIA S, BANDYOPADHYAY T. Computational identification and analysis of MADS box genes in Camellia sinensis. Bioinformation, 2015, 11(3): 115-121.
|
[8] |
GAN Z C, WU X X, BIAHOMBA S A M, FENG T T, LU X M, HU N B, LI R N, HUANG X Z. Genome-wide identification, evolution, and expression characterization of the pepper (Capsicum spp.) MADS-box gene family. Genes, 2022, 13(11): 2047.
|
[9] |
DONG X, ZHANG L P, TANG Y H, YU D M, CHENG F, DONG Y X, JIANG X D, QIAN F M, GUO Z H, HU J Y. Arabidopsis AGAMOUS-LIKE16 and SUPPRESSOR OF CONSTANS1 regulate the genome-wide expression and flowering time. Plant Physiology, 2023, 192(1): 154-169.
|
[10] |
HUANG N C, TIEN H C, YU T S. Arabidopsis leaf-expressed AGAMOUS-LIKE 24 mRNA systemically specifies floral meristem differentiation. New Phytologist, 2024, 241(1): 504-515.
|
[11] |
BECHTOLD U, PENFOLD C A, JENKINS D J, LEGAIE R, MOORE J D, LAWSON T, MATTHEWS J S A, VIALET- CHABRAND S R M, BAXTER L, SUBRAMANIAM S, et al. Time-series transcriptomics reveals that AGAMOUS-LIKE 22 affects primary metabolism and developmental processes in drought-stressed Arabidopsis. The Plant Cell, 2016, 28(2): 345-366.
|
[12] |
SZAKER H M, DARKÓ É, MEDZIHRADSZKY A, JANDA T, LIU H C, CHARNG Y Y, CSORBA T. miR824/AGAMOUS-LIKE 16 module integrates recurring environmental heat stress changes to fine-tune poststress development. Frontiers in Plant Science, 2019, 10: 1454.
|
[13] |
CASTELÁN-MUÑOZ N, HERRERA J, CAJERO-SÁNCHEZ W, ARRIZUBIETA M, TREJO C, GARCÍA-PONCE B, DE LA PAZ SÁNCHEZ M, ÁLVAREZ-BUYLLA E R, GARAY-ARROYO A. MADS-box genes are key components of genetic regulatory networks involved in abiotic stress and plastic developmental responses in plants. Frontiers in Plant Science, 2019, 10: 853.
|
[14] |
LIN C Y, GUO X, YU X H, LI S X, LI W B, YU X L, AN F, ZHAO P J, RUAN M B. Genome-wide survey of the RWP-RK gene family in cassava (Manihot esculenta crantz) and functional analysis. International Journal of Molecular Sciences, 2023, 24(16): 12925.
|
[15] |
HE S C, MA R, LIU Z J, ZHANG D, WANG S X, GUO Y, CHEN M X. Overexpression of BnaAGL11, a MADS-box transcription factor, regulates leaf morphogenesis and senescence in Brassica napus. Journal of Agricultural and Food Chemistry, 2022, 70(11): 3420-3434.
|
[16] |
ZUO D, HU M Y, ZHOU W W, LEI F P, ZHAO J W, GU L. EcAGL enhances cadmium tolerance in transgenic Arabidopsis thaliana through inhibits cadmium transport and ethylene synthesis pathway. Plant Physiology and Biochemistry, 2023, 201: 107900.
|
[17] |
ZHANG Y P, CAI W W, WANG A W, HUANG X Y, ZHENG X, LIU Q, CHENG X G, WAN M Y, LV J G, GUAN D Y, YANG S, HE S L. MADS-box protein AGL8 interacts with chromatin- remodelling component SWC4 to activate thermotolerance and environment-dependent immunity in pepper. Journal of Experimental Botany, 2023, 74(12): 3667-3683.
|
[18] |
SINGH V K, MANGALAM A K, DWIVEDI S, NAIK S. Primer premier: program for design of degenerate primers from a protein sequence. BioTechniques, 1998, 24(2): 318-319.
doi: 10.2144/98242pf02
pmid: 9494736
|
[19] |
|
|
LIU R Y, HUANG G H, LI H Y, LIANG M M, LU M H. Screening and functional analysis in heat-tolerance of the upstream transcription factors of pepper CaHsfA2. Scientia Agricultura Sinica, 2022, 55(16): 3200-3209. doi: 10.3864/j.issn.0578-1752.2022.16.011. (in Chinese)
|
[20] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.
|
[21] |
KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.
doi: 10.1093/molbev/msw054
pmid: 27004904
|
[22] |
阎本涛, 焦可心, 赵悦, 杨巧敏, 陈涛, 逯明辉. 辣椒囊泡形成相关基因CaSec16耐热功能分析. 园艺学报, 2023, 50(11): 2387-2400.
doi: 10.16420/j.issn.0513-353x.2022-0996
|
|
YAN B T, JIAO K X, ZHAO Y, YANG Q M, CHEN T, LU M H. Analysis of heat-tolerant function of pepper vesicle formation related gene CaSec16. Acta Horticulturae Sinica, 2023, 50(11): 2387-2400. (in Chinese)
|
[23] |
王晓立, 韩浩章, 江宇飞. 香樟黄化主要生理指标变化规律研究. 湖北农业科学, 2010, 49(3): 620-622.
|
|
WANG X L, HAN H Z, JIANG Y F. The study of main physiological variation patterns of Camphora etiolation. Hubei Agricultural Sciences, 2010, 49(3): 620-622. (in Chinese)
|
[24] |
DIONISIO-SESE M L, TOBITA S. Antioxidant responses of rice seedlings to salinity stress. Plant Science, 1998, 135(1): 1-9.
|
[25] |
STEWART R R, BEWLEY J D. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology, 1980, 65(2): 245-248.
doi: 10.1104/pp.65.2.245
pmid: 16661168
|
[26] |
陈冲, 刘双, 王丹丹, 池春玉, 朱宏, 金晓霞, 丁国华. 水杨酸诱导黄瓜PCD的鉴定及相关基因的表达分析. 华北农学报, 2018, 33(6): 56-63.
doi: 10.7668/hbnxb.2018.06.008
|
|
CHEN C, LIU S, WANG D D, CHI C Y, ZHU H, JIN X X, DING G H. Identification of PCD induced by salicylic acid and expression analysis of genes related with the PCD in cucumber. Acta Agriculturae Boreali-Sinica, 2018, 33(6): 56-63. (in Chinese)
|
[27] |
VANACKER H, CARVER T L W, FOYER C H. Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiology, 2000, 123(4): 1289-1300.
|
[28] |
张淮霞. 辣椒SBP-box基因在其响应疫霉菌侵染中的功能鉴定及调控机理的研究[D]. 杨凌: 西北农林科技大学, 2020.
|
|
ZHANG H X. Functional identification and regulation mechanism of pepper SBP-box gene in response to Phytophthora infestation[D]. Yangling: Northwest A & F University, 2020. (in Chinese)
|
[29] |
张则婷, 李学宝. MADS-box基因在植物发育中的功能. 植物生理学通讯, 2007, 43(2): 218-222.
|
|
ZHANG Z T, LI X B. Function of MADS-box genes in plant development. Plant Physiology Communications, 2007, 43(2): 218-222. (in Chinese)
|
[30] |
姚琦园, 李纷芬, 张林成, 周升恩. 植物MADS-box转录因子参与调控非生物胁迫的研究进展. 江西农业学报, 2018, 30(5): 73-79.
|
|
YAO Q Y, LI F F, ZHANG L C, ZHOU S E. Research progress in MADS-box transcription factors involved in regulation of abiotic stress of plants. Acta Agriculturae Jiangxi, 2018, 30(5): 73-79. (in Chinese)
|
[31] |
YANG Z F, NIE G, FENG G Y, XU X H, LI D D, WANG X, HUANG L K, ZHANG X Q. Genome-wide identification of MADS-box gene family in orchardgrass and the positive role of DgMADS114 and DgMADS115 under different abiotic stress. International Journal of Biological Macromolecules, 2022, 223(Pt A): 129-142.
|
[32] |
CHEN C, BEGCY K, LIU K, FOLSOM J J, WANG Z, ZHANG C, WALIA H. Heat stress yields a unique MADS box transcription factor in determining seed size and thermal sensitivity. Plant Physiology, 2016, 171(1): 606-622.
doi: 10.1104/pp.15.01992
pmid: 26936896
|
[33] |
YAO Q, LI P, WANG X, LIAO S H, WANG P, HUANG S B. Molecular mechanisms underlying the negative effects of transient heatwaves on crop fertility. Plant Communications, 2024, 5(9): 101009.
|
[34] |
STEFFEN J G, KANG I H, PORTEREIKO M F, LLOYD A, DREWS G N. AGL61 interacts with AGL80 and is required for central cell development in Arabidopsis. Plant Physiology, 2008, 148(1): 259-268.
|
[35] |
CHATURVEDI P, WIESE A J, GHATAK A, DRÁBKOVÁ L Z, WECKWERTH W, HONYS D. Heat stress response mechanisms in pollen development. New Phytologist, 2021, 231(2): 571-585.
doi: 10.1111/nph.17380
pmid: 33818773
|
[36] |
SAN TOH S, CHEN Z H, ROUCHKA E C, SCHULTZ D J, CUOMO C A, PERLIN M H. Pas de deux: An intricate dance of anther smut and its host. G3, 2018, 8(2): 505-518.
|
[37] |
BAKERY A, VRAGGALAS S, SHALHA B, CHAUHAN H, BENHAMED M, FRAGKOSTEFANAKIS S. Heat stress transcription factors as the central molecular rheostat to optimize plant survival and recovery from heat stress. New Phytologist, 2024, 244(1): 51-64.
|
[38] |
ZHAO P X, MIAO Z Q, ZHANG J, CHEN S Y, LIU Q Q, XIANG C B. Arabidopsis MADS-box factor AGL16 negatively regulates drought resistance via stomatal density and stomatal movement. Journal of Experimental Botany, 2020, 71(19): 6092-6106.
|
[39] |
李翠, 侯蕾, 任丽, 张烨, 郑奕雄, 王兴军. 花生热激蛋白AhHSP70与热激因子AhHSF基因的克隆及表达分析. 山东农业科学, 2015, 47(4): 1-7.
|
|
LI C, HOU L, REN L, ZHANG Y, ZHENG Y X, WANG X J. Cloning and expression analysis of AhHSP70 and ah HSF genes in Arachis hypogaea L.. Shandong Agricultural Sciences, 2015, 47(4): 1-7. (in Chinese)
|