[1] |
桂尚枝, 刘雪晴, 王英, 唐小燕, 赵龙龙, 李广, 吴思文, 温宏伟, 汪承刚, 陈国户. 乌菜BcVIL2基因克隆及春化响应表达分析. 西南农业学报, 2023, 36(9): 1843-1851.
|
|
GUI S Z, LIU X Q, WANG Y, TANG X Y, ZHAO L L, LI G, WU S W, WEN H W, WANG C G, CHEN G H. Cloning and expression analysis of BcVIL2 gene in response to vernalization in Brassica campestris L.. Southwest China Journal of Agricultural Sciences, 2023, 36(9): 1843 -1851. (in Chinese)
|
[2] |
CHEN G H, ZENG F L, WANG J, YE X Y, ZHU S D, YUAN L Y, HOU J F, WANG C G. Transgenic Wucai (Brassica campestris L.) produced via Agrobacterium-mediated anther transformation in planta. Plant Cell Reports, 2019, 38(5): 577-586.
|
[3] |
TANG X Y, LIU M M, CHEN G H, YUAN L Y, HOU J F, ZHU S D, ZHANG B Y, LI G, PANG X K, WANG C G. TMT-based comparative proteomic analysis of the male-sterile mutant ms01 sheds light on sporopollenin production and pollen development in Wucai (Brassica campestris L.). Journal of Proteomics, 2022, 254: 104475.
|
[4] |
CHEN G H, YE X Y, ZHANG S Y, ZHU S D, YUAN L Y, HOU J F, WANG C G. Comparative transcriptome analysis between fertile and CMS flower buds in Wucai (Brassica campestris L.). BMC Genomics, 2018, 19(1): 908.
|
[5] |
桂尚枝, 尹倩, 温宏伟, 王浩, 李广, 吴思文, 王英, 刘雪晴, 赵龙龙, KHAN Afrasyab, 汪承刚, 唐小燕, 陈国户. 乌菜春化相关BcGRAS基因鉴定及表达分析. 植物生理学报, 2022, 58(12): 2273-2285.
|
|
GUI S Z, YIN Q, WEN H W, WANG H, LI G, WU S W, WANG Y, LIU X Q, ZHAO L L, KHAN A, WANG C G, TANG X Y, CHEN G H. Genome-wide identification and expression analysis of BcGRAS genes responded to vernalization in Wucai (Brassica campestris ssp. chinensis var. rosularis). Plant Physiology Journal, 2022, 58(12): 2273-2285. (in Chinese)
|
[6] |
MERELO P, GONZÁLEZ-CUADRA I, FERRÁNDIZ C. A cellular analysis of meristem activity at the end of flowering points to cytokinin as a major regulator of proliferative arrest in Arabidopsis. Current Biology, 2022, 32(4): 749-762.
|
[7] |
FORNARA F, DE MONTAIGU A, COUPLAND G. SnapShot: Control of flowering in Arabidopsis. Cell, 2010, 141(3): 550.
|
[8] |
ZHU P, LISTER C, DEAN C. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression. Nature, 2021, 599(7886): 657-661.
|
[9] |
LI X X, LIN C Y, LAN C H, TAO Z. Genetic and epigenetic basis of phytohormonal control of floral transition in plants. Journal of Experimental Botany, 2024, 75(14): 4180-4194.
|
[10] |
亓钰莹, 展妍丽, 王萃铂, 陈发棣, 蒋甲福. AtCPL1调控拟南芥开花的机制. 植物学报, 2016, 51(1): 9-15.
doi: 10.11983/CBB14188
|
|
QI Y Y, ZHAN Y L, WANG C B, CHEN F D, JIANG J F. Mechanism of AtCPL1 in regulating flowering of Arabidopsis. Chinese Bulletin of Botany, 2016, 51(1): 9-15. (in Chinese)
|
[11] |
DONG X X, LI Y J, GUAN Y H, WANG S X, LUO H, LI X M, LI H, ZHANG Z H. Auxin-induced AUXIN RESPONSE FACTOR4 activates APETALA1 and FRUITFULL to promote flowering in woodland strawberry. Horticulture Research, 2021, 8(1): 115.
|
[12] |
陈国户, 庞小可, 李广, 王浩, 吴思文, 温宏伟, 尹倩, 袁凌云, 侯金锋, 唐小燕, 汪承刚. 白菜NAC基因家族全基因组鉴定及其应答春化反应的表达分析. 南京农业大学学报, 2022, 45(4): 656-665.
|
|
CHEN G H, PANG X K, LI G, WANG H, WU S W, WEN H W, YIN Q, YUAN L Y, HOU J F, TANG X Y, WANG C G. Genome-wide identification of NAC gene family in Brassica rapa and its expression analysis of response to vernalization. Journal of Nanjing Agricultural University, 2022, 45(4): 656-665. (in Chinese)
|
[13] |
王云梦, 宋贺云, 刘娟, 章明华, 杨美. FT和TFL1基因调控植物开花的分子机理. 植物生理学报, 2022, 58(1): 77-90.
|
|
WANG Y M, SONG H Y, LIU J, ZHANG M H, YANG M. Molecular mechanism of FT and TFL1 genes on regulation of plant flowering. Plant Physiology Journal, 2022, 58(1): 77-90. (in Chinese)
|
[14] |
LU Q Q, SHI W W, ZHANG F, DING Y. ATX1 and HUB1/2 promote recruitment of the transcription elongation factor VIP2 to modulate the floral transition in Arabidopsis. The Plant Journal: for Cell and Molecular Biology, 2024, 118(6): 1760-1773.
|
[15] |
ZHENG Y, LUO L D, LIU Y Y, YANG Y Q, WANG C T, KONG X X, YANG Y P. Effect of vernalization on tuberization and flowering in the Tibetan turnip is associated with changes in the expression of FLC homologues. Plant Diversity, 2018, 40(2): 50-56.
|
[16] |
QÜESTA J I, SONG J, GERALDO N, AN H L, DEAN C. Arabidopsis transcriptional repressor VAL1 triggers polycomb silencing at FLC during vernalization. Science, 2016, 353(6298): 485-488.
|
[17] |
HUANG S N, HOU L, FU W, LIU Z Y, LI C Y, LI X, FENG H. An insertion mutation in Bra032169encoding a histone methyltransferase is responsible for early bolting in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Frontiers in Plant Science, 2020, 11: 547.
|
[18] |
TAN C, REN J, WANG L, YE X L, FU W, ZHANG J M, QI M, FENG H, LIU Z Y. A single amino acid residue substitution in BraA04g017190.3C, a histone methyltransferase, results in premature bolting in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Plant Biology, 2021, 21(1): 373.
|
[19] |
WANG Y D, SONG S W, HAO Y W, CHEN C M, OU X, HE B, ZHANG J W, JIANG Z H, LI C M, ZHANG S W, SU W, CHEN R Y. Role of BraRGL1 in regulation of Brassica rapa bolting and flowering. Horticulture Research, 2023, 10(8): uhad119.
|
[20] |
TILMES V, MATEOS J L, MADRID E, VINCENT C, SEVERING E, CARRERA E, LÓPEZ-DÍAZ I, COUPLAND G. Gibberellins act downstream of Arabis PERPETUAL FLOWERING1 to accelerate floral induction during vernalization. Plant Physiology, 2019, 180(3): 1549-1563.
|
[21] |
CLOUSE S D. The molecular intersection of brassinosteroid-regulated growth and flowering in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(21): 7345-7346.
|
[22] |
LI J H, LI Y H, CHEN S Y, AN L Z. Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. Journal of Experimental Botany, 2010, 61(15): 4221-4230.
|
[23] |
LI Z C, OU Y, ZHANG Z C, LI J M, HE Y H. Brassinosteroid signaling recruits histone 3 lysine-27 demethylation activity to FLOWERING LOCUS C chromatin to inhibit the floral transition in Arabidopsis. Molecular Plant, 2018, 11(9): 1135-1146.
|
[24] |
DOMAGALSKA M A, SCHOMBURG F M, AMASINO R M, VIERSTRA R D, NAGY F, DAVIS S J. Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development, 2007, 134(15): 2841-2850.
|
[25] |
FUJIOKA S, LI J, CHOI Y H, SETO H, TAKATSUTO S, NOGUCHI T, WATANABE T, KURIYAMA H, YOKOTA T, CHORY J, SAKURAI A. The Arabidopsis deetiolated 2 mutant is blocked early in brassinosteroid biosynthesis. The Plant Cell, 1997, 9(11): 1951-1962.
|
[26] |
SZEKERES M, NÉMETH K, KONCZ-KÁLMÁN Z, MATHUR J, KAUSCHMANN A, ALTMANN T, RÉDEI G P, NAGY F, SCHELL J, KONCZ C. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 1996, 85(2): 171-182.
|
[27] |
VUKAŠINOVIĆ N, WANG Y W, VANHOUTTE I, FENDRYCH M, GUO B Y, KVASNICA M, JIROUTOVÁ P, OKLESTKOVA J, STRNAD M, RUSSINOVA E. Local brassinosteroid biosynthesis enables optimal root growth. Nature Plants, 2021, 7(5): 619-632.
doi: 10.1038/s41477-021-00917-x
pmid: 34007032
|
[28] |
HAN C, WANG L Y, LYU J Y, SHI W, YAO L M, FAN M, BAI M Y. Brassinosteroid signaling and molecular crosstalk with nutrients in plants. Journal of Genetics and Genomics, 2023, 50(8): 541-553.
doi: 10.1016/j.jgg.2023.03.004
pmid: 36914050
|
[29] |
MOON J, PARK Y J, SON S H, ROH J, YOUN J H, KIM S Y, KIM S K. Brassinosteroids signaling via BZR1 down-regulates expression of ACC oxidase 4 to control growth of Arabidopsis thaliana seedlings. Plant Signaling & Behavior, 2020, 15(4): 1734333.
|
[30] |
CUI J W, ZENG G H, GAO F F, JIANG Y, WANG Y T, LI D D, WANG X F, XI Z M. Cloning, characterization and expression analysis of a brassinosteroids biosynthetic gene VvDET2 in Cabernet Sauvignon (Vitis vinifera L.). Plant Cell, Tissue and Organ Culture, 2023, 154(1): 43-54.
|
[31] |
ROSATI F, BARDAZZI I, DE BLASI P, SIMI L S, SCARPI D, GUARNA A, SERIO M, RACCHI M L, DANZA G. 5α-reductase activity in Lycopersicon esculentum: Cloning and functional characterization of LeDET2 and evidence of the presence of two isoenzymes. The Journal of Steroid Biochemistry and Molecular Biology, 2005, 96(3/4): 287-299.
|
[32] |
郑冰峰, 马玉柱, 卢华丹, 孙森, 安汶铠, 张富春. 喷施油菜素内酯对棉花类固醇5α-还原酶基因(GhDET2)在干旱胁迫下表达影响的分析. 基因组学与应用生物学, 2018, 37(2): 859-866.
|
|
ZHENG B F, MA Y Z, LU H D, SUN S, AN W K, ZHANG F C. Effects of spraying brassinolide on expression of steroid 5-alpha reductase gene (GhDET2) in cotton under drought stress. Genomics and Applied Biology, 2018, 37(2): 859-866. (in Chinese)
|
[33] |
HUO W G, LI B D, KUANG J B, HE P G, XU Z H, WANG J X. Functional characterization of the steroid reductase genes GmDET2a and GmDET2b from Glycine max. International Journal of Molecular Sciences, 2018, 19(3): 726.
|
[34] |
WANG Y, HAO Y, GUO Y K, SHOU H X, DU J. PagDET2 promotes cambium cell division and xylem differentiation in poplar stem. Frontiers in Plant Science, 2022, 13: 923530.
|
[35] |
李泽华, 杜娟, 贺学娇, 赵树堂, 刘颖丽, 卢孟柱. 杨树油菜素内酯合成基因DET2的克隆与功能分析. 林业科学研究, 2020, 33(2): 85-92.
|
|
LI Z H, DU J, HE X J, ZHAO S T, LIU Y L, LU M Z. Cloning and characterization of brassinosteriod biosynthesis-related gene DET2 in poplar. Forest Research, 2020, 33(2): 85-92. (in Chinese)
|
[36] |
SUZUKI S, MIYATA K, HARA M, NIINUMA K, TSUKAYA H, TAKASE M, HAYAMA R, MIZOGUCHI T. A loss-of-function mutation in the DWARF4/PETANKO5gene enhances the late- flowering and semi-dwarf phenotypes of the Arabidopsis clock mutant lhy-12;cca1-101 under continuous light without affecting FLC expression. Plant Biotechnology, 2016, 33(4): 315-321.
|
[37] |
王楠. 烟草BR信号通路与成花相关基因在花芽分化响应苗期低温中的表达分析[D]. 重庆: 西南大学, 2019.
|
|
WANG N. Expression analysis of the gene in tobacco BR signaling pathway and flower-related in flower bud differentiation in response to low temperature in seedling stage[D]. Chongqing: Southwest University, 2019. (in Chinese)
|
[38] |
MAO G L, QI X H, BAO Y, LI X, WU Y H, HOU L P, LI M L. Expression analysis of brassinolide-metabolism-related genes at different growth stages of Pak Choi. Horticulturae, 2022, 8(11): 1093.
|
[39] |
WANG M L, YANG D Y, MA F L, ZHU M L, SHI Z Y, MIAO X X. OsHLH61-OsbHLH 96 influences rice defense to brown planthopper through regulating the pathogen-related genes. Rice, 2019, 12(1): 9.
|
[40] |
SONG S S, TAO Y, GAO L H, LIANG H L, TANG D S, LIN J, WANG Y C, GMITTER F G Jr, LI C F. An integrated metabolome and transcriptome analysis reveal the regulation mechanisms of flavonoid biosynthesis in a purple tea plant cultivar. Frontiers in Plant Science, 2022, 13: 880227.
|
[41] |
YIN Y B, YAN Z Q, GUAN J N, HUO Y Q, WANG T Q, LI T, CUI Z B, MA W H, WANG X X, CHEN W F. Two interacting basic helix-loop-helix transcription factors control flowering time in rice. Plant Physiology, 2023, 192(1): 205-221.
doi: 10.1093/plphys/kiad077
pmid: 36756926
|