[1] |
WICKER T, SABOT F, HUA-VAN A, BENNETZEN J L, CAPY P, CHALHOUB B, FLAVELL A, LEROY P, MORGANTE M, PANAUD O, PAUX E, SANMIGUEL P, SCHULMAN A H. A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 2007, 8(12): 973-982.
doi: 10.1038/nrg2165
pmid: 17984973
|
[2] |
HIROCHIKA H, SUGIMOTO K, OTSUKI Y, TSUGAWA H, KANDA M. Retrotransposons of rice involved in mutations induced by tissue culture. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(15): 7783-7788.
|
[3] |
MIYAO A, TANAKA K, MURATA K, SAWAKI H, TAKEDA S, ABE K, SHINOZUKA Y, ONOSATO K, HIROCHIKA H. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. The Plant Cell, 2003, 15(8): 1771-1780.
|
[4] |
JUN K M, KIM J S, CHAE S, PAHK Y M, LEE G S, CHUNG J H, KIM Y K, NAHM B H. Development of Tos17 insertion mutants from Korean cultivars ‘Ilmibyeo’ and ‘Baegjinju1ho’ (Oryza sativa L.). Applied Biological Chemistry, 2019, 62(1): 31.
|
[5] |
IMAGAWA F, MINAGAWA H, NAKAYAMA Y, KANNO K, HAYAKAWA T, KOJIMA S. Tos17 insertion in NADH-dependent glutamate synthase genes leads to an increase in grain protein content in rice. Journal of Cereal Science, 2018, 84: 38-43.
|
[6] |
GINDRI R G, NAVARRO B B, DA CRUZ DIAS P V, TAROUCO C P, NICOLOSO F T, BRUNETTO G, BERGHETTI Á L P, DA SILVA L O S, FETT J P, MENGUER P K, RICACHENEVSKY F K. Physiological responses of rice (Oryza sativa L.) oszip7 loss-of- function plants exposed to varying Zn concentrations. Physiology and Molecular Biology of Plants, 2020, 26(7): 1349-1359.
|
[7] |
YAMBURENKO M V, WORTHEN J M, ZEENAT A, AZHAR B J, SWAIN S, COUITT A R, SHAKEEL S N, KIEBER J J, ERIC SCHALLER G. Functional analysis of the rice type-B response regulator RR22. Frontiers in Plant Science, 2020, 11: 577676.
|
[8] |
SUN H Z, SUN J J, YUAN Z K, LI F H, LI X R, LI J Z, DU Y X, WANG F Q. A Tos17 transposon insertion in OsCesA9 causes brittle culm in rice. Gene, 2024, 890: 147818.
|
[9] |
SAIKA H, MORI A, ENDO M, TOKI S. Targeted deletion of rice retrotransposon Tos17 via CRISPR/Cas9. Plant Cell Reports, 2019, 38(4): 455-458.
|
[10] |
LUO Y C, TIAN D S, TEO J C Y, ONG K H, YIN Z C. Inactivation of retrotransposon Tos17Chr.7 in rice cultivar Nipponbare through CRISPR/Cas9-mediated gene editing. Plant Biotechnology, 2020, 37(1): 69-75.
|
[11] |
PETIT J, BOURGEOIS E, STENGER W, BÈS M, DROC G, MEYNARD D, COURTOIS B, GHESQUIÈRE A, SABOT F, PANAUD O, GUIDERDONI E. Diversity of the Ty-1 Copia retrotransposon Tos17 in rice (Oryza sativa L.) and the AA genome of the Oryza genus. Molecular Genetics and Genomics, 2009, 282(6): 633-652.
|
[12] |
CARPENTIER M C, MANFROI E, WEI F J, WU H P, LASSERRE E, LLAURO C, DEBLADIS E, AKAKPO R, HSING Y I, PANAUD O. Retrotranspositional landscape of Asian rice revealed by 3000 genomes. Nature Communications, 2019, 10(1): 24.
|
[13] |
MCNALLY K L. The 3000 Rice Genome Project. Plant & Animal Genome, 2014.
|
[14] |
LIU Z, FAN M, YUE E K, LI Y, TAO R F, XU H M, DUAN M H, XU J H. Natural variation and evolutionary dynamics of transposable elements in Brassica oleracea based on next-generation sequencing data. Horticulture Research, 2020, 7: 145.
|
[15] |
WU S L, TAN Y Y, ZHAO Y, FAN L J, GAO Q K, GATEHOUSE A M R, SHU Q Y. CTREP-finder: A web service for quick identification and visualization of clean transgenic and genome-edited plants. Crop Design, 2022, 1(1): 100003.
|
[16] |
LV Q M, LI W G, SUN Z Z, OUYANG N, JING X, HE Q, WU J, ZHENG J K, ZHENG J T, TANG S Q, et al. Resequencing of 1, 143 indica rice accessions reveals important genetic variations and different heterosis patterns. Nature Communications, 2020, 11: 4778.
|
[17] |
YE J H, ZHANG M C, YUAN X P, HU D X, ZHANG Y Y, XU S L, LI Z, LI R S, LIU J R, SUN Y F, WANG S, FENG Y, XU Q, YANG Y L, WEI X H. Genomic insight into genetic changes and shaping of major inbred rice cultivars in China. New Phytologist, 2022, 236(6): 2311-2326.
doi: 10.1111/nph.18500
pmid: 36114658
|
[18] |
LI X X, CHEN Z, ZHANG G M, LU H W, QIN P, QI M, YU Y, JIAO B K, ZHAO X F, GAO Q, et al. Analysis of genetic architecture and favorable allele usage of agronomic traits in a large collection of Chinese rice accessions. SCIENCE CHINA Life Sciences, 2020, 63(11): 1688-1702.
|
[19] |
BOLGER A M, LOHSE M, USADEL B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15): 2114-2120.
doi: 10.1093/bioinformatics/btu170
pmid: 24695404
|
[20] |
LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with bowtie 2. Nature Methods, 2012, 9(4): 357-359.
doi: 10.1038/nmeth.1923
pmid: 22388286
|
[21] |
LI H, HANDSAKER B, WYSOKER A, FENNELL T, RUAN J, HOMER N, MARTH G, ABECASIS G, DURBIN R, 1000 GENOME PROJECT DATA PROCESSING SUBGROUP. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25(16): 2078-2079.
doi: 10.1093/bioinformatics/btp352
pmid: 19505943
|
[22] |
ALTSCHUL S F, GISH W, MILLER W, MYERS E W, LIPMAN D J. Basic local alignment search tool. Journal of Molecular Biology, 1990, 215(3): 403-410.
doi: 10.1016/S0022-2836(05)80360-2
pmid: 2231712
|
[23] |
HU B, JIN J P, GUO A Y, ZHANG H, LUO J C, GAO G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics, 2015, 31(8): 1296-1297.
doi: 10.1093/bioinformatics/btu817
pmid: 25504850
|
[24] |
POREBSKI S, BAILEY L G, BAUM B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 1997, 15(1): 8-15.
|
[25] |
CHEN Y X, CHEN Y S, SHI C M, HUANG Z B, ZHANG Y, LI S K, LI Y, YE J, YU C, LI Z, ZHANG X Q, WANG J, YANG H M, FANG L, CHEN Q. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high- throughput sequencing data. GigaScience, 2018, 7(1): 1-6.
|
[26] |
MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULER D, GABRIEL S, DALY M, DEPRISTO M A. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010, 20(9): 1297-1303.
doi: 10.1101/gr.107524.110
pmid: 20644199
|
[27] |
PURCELL S, NEALE B, TODD-BROWN K, THOMAS L, FERREIRA M A R, BENDER D, MALLER J, SKLAR P, DE BAKKER P I W, DALY M J, SHAM P C. PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 2007, 81(3): 559-575.
|
[28] |
LETUNIC I, BORK P. Interactive tree of life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics, 2007, 23(1): 127-128.
doi: 10.1093/bioinformatics/btl529
pmid: 17050570
|
[29] |
ROBINSON J T, THORVALDSDÓTTIR H, WINCKLER W, GUTTMAN M, LANDER E S, GETZ G, MESIROV J P. Integrative genomics viewer. Nature Biotechnology, 2011, 29(1): 24-26.
doi: 10.1038/nbt.1754
pmid: 21221095
|
[30] |
LIN C J, LIN X Y, HU L J, YANG J J, ZHOU T Q, LONG L K, XU C M, XING S C, QI B, DONG Y S, LIU B. Dramatic genotypic difference in, and effect of genetic crossing on, tissue culture-induced mobility of retrotransposon Tos17 in rice. Plant Cell Reports, 2012, 31(11): 2057-2063.
|
[31] |
PIFFANELLI P, DROC G, MIEULET D, LANAU N, BÈS M, BOURGEOIS E, ROUVIÈRE C, GAVORY F, CRUAUD C, GHESQUIÈRE A, GUIDERDONI E. Large-scale characterization of Tos17 insertion sites in a rice T-DNA mutant library. Plant Molecular Biology, 2007, 65(5): 587-601.
|
[32] |
马振. 水稻Tos17突变体库的创建和应用[D]. 武汉: 华中农业大学, 2010.
|
|
MA Z. Establishment and application of rice Tos17 mutant library[D]. Wuhan: Huazhong Agricultural University, 2010. (in Chinese)
|