[1] |
LI E T, ZHANG S, LI K B, NYAMWASAA I, LI J Q, LI X F, QIN J H, YIN J. Efficacy of entomopathogenic nematode and Bacillus thuringiensis combinations against Holotrichia parallela (Coleoptera: Scarabaeidae) larvae. Biological Control, 2021, 152: 104469.
|
[2] |
刘思雨, 薛锐, 陈斌, 杜广祖, 李正跃, 肖关丽. 黄绿绿僵菌Ma130821对暗黑鳃金龟幼虫的室内毒力及毒杀作用研究. 环境昆虫学报, 2018, 40(6): 1429-1436.
|
|
LIU S Y, XUE R, CHEN B, DU G Z, LI Z Y, XIAO G L. Study on the virulence and toxicity efficacy of Metarhizium flavoviride Ma130821 against the larvae of Holotrichia parallela Motschulsky in laboratory. Journal of Environmental Entomology, 2018, 40(6): 1429-1436. (in Chinese)
|
[3] |
赵庆雷, 信彩云, 王瑜, 阴筱, 刘奇华, 林香青. 不同轮作模式对花生病虫害及产量的影响. 植物保护学报, 2018, 45(6): 1321-1327.
|
|
ZHAO Q L, XIN C Y, WANG Y, YIN X, LIU Q H, LIN X Q. Effects of different rotation patterns on peanut diseases, pests and yield. Journal of Plant Protection, 2018, 45(6): 1321-1327. (in Chinese)
|
[4] |
王伟. 暗黑鳃金龟中肠Cry8Ea3特异性结合蛋白的鉴定及结合特性研究[D]. 保定: 河北农业大学, 2017.
|
|
WANG W. Identification and binding characteristics of Cry8Ea3 specific binding protein in the midgut of the Holotrichia parallela[D]. Baoding: Hebei Agricultural University, 2017. (in Chinese)
|
[5] |
ABAD A R, DUCK N B, FENG X, FLANNAGAN R D, KAHN T W, SIMS L E. Genes encoding novel proteins with pesticidal activity against coleopterans: US2002151709A1[P]. (2002-10-17) [2025-01-13].
|
[6] |
BEL Y, FERRÉ J, HERNÁNDEZ-MARTÍNEZ P. Bacillus thuringiensis toxins: Functional characterization and mechanism of action. Toxins, 2020, 12(12): 785.
|
[7] |
DOMÍNGUEZ-ARRIZABALAGA M, VILLANUEVA M, ESCRICHE B, ANCÍN-AZPILICUETA C, CABALLERO P. Insecticidal activity of Bacillus thuringiensis proteins against coleopteran pests. Toxins, 2020, 12(7): 430.
|
[8] |
JIN T T, DUAN X L, BRAVO A, SOBERON M, WANG Z Y, HE K L. Identification of an alkaline phosphatase as a putative Cry1Ac binding protein in Ostrinia furnacalis (Guenée). Pesticide Biochemistry and Physiology, 2016, 131: 80-86.
|
[9] |
XIE C, XIONG L, YE M, SHEN L L, LI J G, ZHANG Z, YOU M S, YOU S J. Genome-wide analysis of V-ATPase genes in Plutella xylostella (L.) and the potential role of PxVHA-G1 in resistance to Bacillus thuringiensis Cry1Ac toxin. International Journal of Biological Macromolecules, 2022, 194: 74-83.
|
[10] |
段云鹏, 姚雪, 李品, 王萌涵, 胡守印, 胡恩静, 刘永刚, 杨淑芳, 魏纪珍. 棉铃虫V-ATPase亚基B是Cry1Ac的功能受体. 中国生物防治学报, 2022, 38(5): 1094-1102.
doi: 10.16409/j.cnki.2095-039x.2022.09.005
|
|
DUAN Y P, YAO X, LI P, WANG M H, HU S Y, HU E J, LIU Y G, YANG S F, WEI J Z. V-ATPase subunit B is a functional receptor of Cry1Ac in Helicoverpa armigera (Lepidoptera: Noctuidae). Chinese Journal of Biological Control, 2022, 38(5): 1094-1102. (in Chinese)
|
[11] |
NELSON N, PERZOV N, COHEN A, HAGAI K, PADLER V, NELSON H. The cellular biology of proton-motive force generation by V-ATPases. The Journal of Experimental Biology, 2000, 203(1): 89-95.
|
[12] |
袁向东, 张万娜, 赵曼, 梁革梅. 甜菜夜蛾中肠碱性磷酸酶alp2基因的克隆、表达及功能分析. 植物保护学报, 2017, 44(1): 8-15.
|
|
YUAN X D, ZHANG W N, ZHAO M, LIANG G M. Cloning, expression and functional analysis of alkaline phosphatase 2 (alp2) in the midgut of beet armyworm Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Journal of Plant Protection, 2017, 44(1): 8-15. (in Chinese)
|
[13] |
常梦颖, 赵丹, 张雅昆, 徐畅, 陆秀君, 郭巍. 美国白蛾中肠碱性磷酸酶HcALP1与苏云金杆菌3种Bt蛋白的体外结合特性分析. 蚕业科学, 2019, 45(3): 331-337.
|
|
CHANG M Y, ZHAO D, ZHANG Y K, XU C, LU X J, GUO W. In vitro binding characteristics of Hyphantria cunea midgut HcALP1 with three kinds of Bacillus thuringiensis Cry toxins. Acta Sericologica Sinica, 2019, 45(3): 331-337. (in Chinese)
|
[14] |
胡硕, 何玉英, 李健, 张海恩, 韩旭. 中国对虾V-ATPase c亚基基因的克隆及其在高pH胁迫下的表达分析. 中国水产科学, 2019, 26(6): 1064-1074.
|
|
HU S, HE Y Y, LI J, ZHANG H E, HAN X. Cloning and expression analysis of V-ATPase c subunit gene under high pH stress in Fenneropenaeus chinensis. Journal of Fishery Sciences of China, 2019, 26(6): 1064-1074. (in Chinese)
|
[15] |
MO D, CHEN Y, JIANG N, SHEN J, ZHANG J. Investigation of isoform specific functions of the V-ATPase a subunit during Drosophila wing development. Frontiers in Genetics, 2020, 11: 723.
|
[16] |
SHI X, LIU X, COOPER A M, SILVER K, MERZENDORFER H, ZHU K Y, ZHANG J. Vacuolar (H+)-ATPase subunit c is essential for the survival and systemic RNA interference response in Locusta migratoria. Pest Management Science, 2022, 78(4): 1555-1566.
|
[17] |
LÜ J, GUO M, CHEN S, NOLAND J E, GUO W, SANG W, QI Y, QIU B, ZHANG Y, YANG C, PAN H. Double-stranded RNA targeting vATPase B reveals a potential target for pest management of Henosepilachna vigintioctopunctata. Pesticide Biochemistry and Physiology, 2020, 165: 104555.
|
[18] |
GUO W, GUO M, YANG C, LIU Z, CHEN S, LÜ J, QIU B, ZHANG Y, ZHOU X, PAN H. RNA interference-mediated silencing of vATPase subunits A and E affect survival and development of the 28-spotted ladybeetle, Henosepilachna vigintioctopunctata. Insect Science, 2021, 28(6): 1664-1676.
doi: 10.1111/1744-7917.12899
pmid: 33421334
|
[19] |
WANG X, ZHAO D, WANG Q, LIU Y, LU X, GUO W. Identification and functional analysis of V-ATPase A and C genes in Hyphantria cunea. Insects, 2024, 15(7): 515.
|
[20] |
LI H, KHAJURIA C, RANGASAMY M, GANDRA P, FITTER M, GENG C, WOOSELY A, HASLER J, SCHULENBERG G, WORDEN S, MCEWAN R, EVANS C, SIEGFRIED B, NARVA K E. Long dsRNA but not siRNA initiates RNAi in western corn rootworm larvae and adults. Journal of Applied Entomology, 2015, 139(6): 432-445.
|
[21] |
王梦珂, 赵特, 周琳, 杜鹏强, 刘向阳, 郭线茹. 棉铃虫V-ATP酶G亚基基因克隆及相对表达量分析. 植物保护学报, 2020, 47(1): 205-206.
|
|
WANG M K, ZHAO T, ZHOU L, DU P Q, LIU X Y, GUO X R. Cloning and relative expression level of vacuolar-type proton ATPase G subunit gene in the cotton bollworm Helicoverpa armigera. Journal of Plant Protection, 2020, 47(1): 205-206. (in Chinese)
|
[22] |
QIU L, ZHANG B, LIU L, MA W, WANG X, LEI C, CHEN L. Proteomic analysis of Cry2Aa-binding proteins and their receptor function in Spodoptera exigua. Scientific Reports, 2017, 7: 40222.
|
[23] |
CANDAS M, LOSEVA O, OPPERT B, KOSARAJU P, BULLA L A. Insect resistance to Bacillus thuringiensis: Alterations in the Indianmeal moth larval gut proteome. Molecular and Cellular Proteomics, 2003, 2(1): 19-28.
|
[24] |
BAYYAREDDY K, ANDACHT T M, ABDULLAH M A, ADANG M J. Proteomic identification of Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes from Aedes (Stegomyia) aegypti Linnaeus (Diptera, Culicidae) larvae. Insect Biochemistry and Molecular Biology, 2009, 39(4): 279-286.
|
[25] |
FU K Y, GUO W C, LV F G, LIU X P, LI G Q. Response of the vacuolar ATPase subunit E to RNA interference and four chemical pesticides in Leptinotarsa decemlineata (Say). Pesticide Biochemistry and Physiology, 2014, 114: 16-23.
|
[26] |
TANAKA S, ENDO H, ADEGAWA S, KIKUTA S, SATO R. Functional characterization of Bacillus thuringiensis Cry toxin receptors explains resistance in insects. The FEBS Journal, 2016, 283(24): 4474-4490.
|
[27] |
LI X, MIYAMOTO K, TAKASU Y, WADA S, IIZUKA T, ADEGAWA S, SATO R, WATANABE K. ATP-binding cassette subfamily a member 2 is a functional receptor for Bacillus thuringiensis Cry2A Toxins in Bombyx mori, but not for Cry1A, Cry1C, Cry1D, Cry1F, or Cry9A toxins. Toxins, 2020, 12(2): 104.
|
[28] |
GAO M J, DONG S, HU X D, ZHANG X, LIU Y, ZHONG J F, LU L, WANG Y, CHEN L M, LIU X J. Roles of midgut cadherin from two moths in different Bacillus thuringiensis action mechanisms: Correlation among toxin binding, cellular toxicity, and synergism. Journal of Agricultural and Food Chemistry, 2019, 67(48): 13237-13246.
|