中国农业科学 ›› 2022, Vol. 55 ›› Issue (11): 2174-2186.doi: 10.3864/j.issn.0578-1752.2022.11.008
卞荣军(),刘晓雨,郑聚锋,程琨,张旭辉,李恋卿,潘根兴(
)
收稿日期:
2021-04-06
接受日期:
2021-06-23
出版日期:
2022-06-01
发布日期:
2022-06-16
通讯作者:
潘根兴
作者简介:
卞荣军,E-mail:
BIAN RongJun(),LIU XiaoYu,ZHENG JuFeng,CHENG Kun,ZHANG XuHui,LI LianQing,PAN GenXing(
)
Received:
2021-04-06
Accepted:
2021-06-23
Online:
2022-06-01
Published:
2022-06-16
Contact:
GenXing PAN
摘要:
生物质热解炭化过程中,有机可挥发组分从固相逸出,冷凝后重新吸附于生物质炭,成为其中的可溶性有机物。生物质炭可溶性有机物化学组成复杂,主要含小分子有机物与芳香类化合物且含有丰富的官能团,具有较高的化学反应活性和生物活性,可显著地改变土壤中养分元素和污染物的形态与有效性,影响土壤微生物组成与丰度,调控作物的生长与健康。依生物质原料和热解条件的差异,生物质炭可溶性有机物的化学结构与生物活性功能也不尽相同。生物质炭可溶性有机物的生物活性意义主要表现为对生物的刺激作用,但部分生物质炭可溶性有机物可能具有一定的潜在毒性风险。通过提取生物质炭可溶性有机物可生产具有生物刺激作用的商品液体有机肥,从而实现生物质炭的分值利用。未来需要进一步加强生物质炭可溶性组分的生物活性或毒性物质的鉴定及其形成机制的研究,这对于生物质炭产品的优化是十分必要的,也是应用生物质炭尽量避免环境风险的要求。
卞荣军,刘晓雨,郑聚锋,程琨,张旭辉,李恋卿,潘根兴. 生物质炭可溶性有机物化学组成及生物活性意义[J]. 中国农业科学, 2022, 55(11): 2174-2186.
BIAN RongJun,LIU XiaoYu,ZHENG JuFeng,CHENG Kun,ZHANG XuHui,LI LianQing,PAN GenXing. Chemical Composition and Bioactivity of Dissolvable Organic Matter in Biochars[J]. Scientia Agricultura Sinica, 2022, 55(11): 2174-2186.
表1
不同原料及热解温度下制备的生物质炭可溶性有机碳(DOC)含量"
生物质炭 Biochar | 热解温度 Pyrolysis temperature (℃) | 提取方法/温度 Extraction method/Temperature | DOC含量 DOC content (g·kg-1) | 参考文献 References |
---|---|---|---|---|
柳相思木炭 Saligna biochar | 380 | 生物质炭﹕去离子水 (m﹕v, 1﹕10) BiocharDeionized water (m﹕v, 1﹕10) 50℃ | 0.37 | [ |
混合木屑炭 Sawdust biochar | 450 | 0.93 | ||
混合木屑炭 Sawdust biochar | 550 | 0.04 | ||
桉树木炭 Jarrah biochar | 600 | 0.04 | ||
小麦秸秆炭 Wheat straw biochar | 350-450 | 生物质炭﹕去离子水 (m﹕v, 1﹕20) Biochar﹕Deionized water (m﹕v, 1﹕20) 100℃ | 11.40 | [ |
玉米秸秆炭 Maize straw biochar | 350-450 | 3.10 | ||
花生壳炭 Peanut shell biochar | 350-450 | 2.10 | ||
小麦秸秆炭 Wheat straw biochar | 500-800 | 2.82 | ||
水稻秸秆炭 Rice straw biochar | 500-800 | 2.43 | ||
稻壳炭 Rice husk biochar | 650-850 | 0.66 | ||
玉米秸秆炭 Maize straw biochar | 350-450 | 6.22 | ||
水稻秸秆炭 Rice straw biochar | 400 | 生物质炭﹕去离子水 (m﹕v, 1﹕300) Biochar: Deionized water (m﹕v, 1﹕300) 20℃ | 12.00 | [ |
竹炭 Bamboo biochar | 400 | 1.10 | ||
小麦秸秆炭 Wheat straw biochar | 450 | 生物质炭:去离子水(m﹕v, 1﹕20) Biochar﹕Deionized water (m﹕v, 1﹕20) 100℃ | 22.84 | [ |
水稻秸秆炭 Rice straw biochar | 450 | 18.53 | ||
玉米秸秆炭 Maize straw biochar | 450 | 22.82 | ||
玉米芯炭 Corncob biochar | 450 | 18.53 | ||
油菜秸秆炭 Rape straw biochar | 450 | 21.38 | ||
鸡粪炭 Chicken manure biochar | 450 | 11.34 | ||
猪粪炭 Pig manure biochar | 450 | 15.52 | ||
木屑炭 Sawdust biochar | 450 | 5.00 | ||
甘蔗渣炭 Bagasse biochar | 450 | 14.65 | ||
中药渣炭 Herb residues biochar | 450 | 18.88 | ||
污泥炭 Sewage sludge biochar | 450 | 8.25 | ||
稻壳炭 Rice husk biochar | 450 | 15.77 | ||
芦苇炭 Reed biochar | 450 | 10.32 | ||
竹炭Bamboo biochar | 450 | 7.52 | ||
花生壳炭 Peanut shell biochar | 450 | 16.94 | ||
小麦秸秆炭 Wheat straw biochar | 350 | 生物质炭﹕去离子水 (m﹕v, 1﹕20) Biochar﹕Deionized water (m﹕v, 1﹕20) 100℃ | 27.00 | [ |
550 | 12.80 | |||
小麦秸秆炭 Wheat straw biochar | 350 | 生物质炭﹕氢氧化钾 (m﹕v, 1﹕20) Biochar﹕KOH solution (m﹕v, 1﹕20) 100℃ | 41.40 | |
550 | 14.00 | |||
香蒲炭 Typha orientalis biochar | 300 | 生物质炭﹕去离子水 (m﹕v, 1﹕20) Biochar﹕Deionized water (m﹕v, 1﹕20) 20℃ | 5.96 | [ |
400 | 7.50 | |||
500 | 10.20 | |||
600 | 2.20 | |||
700 | 1.63 | |||
生物质炭 Biochar | 热解温度 Pyrolysis temperature (℃) | 提取方法/温度 Extraction method/Temperature | DOC含量 DOC content (g·kg-1) | 参考文献 References |
玉米秸秆炭 Maize straw biochar | 300 | 生物质炭﹕去离子水 (m﹕v, 1﹕80) Biochar﹕Deionized water (m:v, 1﹕80) 25℃ | 10.00 | [ |
500 | 7.00 | |||
水稻秸秆炭 Rice straw biochar | 350 | 生物质炭﹕去离子水 (m﹕v, 1﹕160) Biochar﹕Deionized water (m﹕v, 1﹕160) 25℃ | 0.47 | [ |
500 | 0.37 | |||
700 | 0.32 | |||
大豆秸秆炭 Soybean straw biochar | 700 | 生物质炭﹕去离子水 (m﹕v, 1﹕75) Biochar﹕Deionized water (m﹕v, 1﹕75) 25℃ | 4.83 | [ |
蒜苗秆炭 Garlic stem biochar | 700 | 2.66 | ||
稻壳炭 Rich husk biochar | 700 | 0.12 | ||
紫苏秆炭 Perilla biochar | 700 | 16.40 | ||
鸡粪炭 Chicken manure biochar | 200 | 生物质炭﹕去离子水 (m﹕v, 1﹕100) Biochar﹕Deionized water (m﹕v, 1﹕100) 25℃ | 25.00 | [ |
300 | 12.50 | |||
400 | 4.80 | |||
500 | 0.50 | |||
600 | 0.30 | |||
700 | 0.17 | |||
羊粪炭 Sheep manure biochar | 200 | 10.90 | ||
300 | 1.25 | |||
400 | 0.40 | |||
500 | 0.30 | |||
600 | 0.21 | |||
700 | 0.21 | |||
猪粪炭 Pig manure biochar | 200 | 16.60 | ||
300 | 9.00 | |||
400 | 4.00 | |||
500 | 0.40 | |||
600 | 0.35 | |||
700 | 0.33 | |||
玉米秸秆炭 Maize straw biochar | 450 | 生物质炭﹕去离子水 (m﹕v, 1﹕20) Biochar﹕Deionized water (m﹕v, 1﹕20) 25℃ | 3.14 | [ |
水稻秸秆炭 Rice straw biochar | 450 | 3.36 | ||
花生壳炭 Peanut shell biochar | 450 | 8.13 |
表2
施用生物质炭DOM对作物生物量和品质的影响"
生物质原料 Biomass feedstock | 热解温度 Pyrolysis temperature (℃) | 提取剂 Extract solution | 试验方式 Experiment type | 作物 Crop | 生物量 Biomass yield | 品质 Quality | 文献 Reference |
---|---|---|---|---|---|---|---|
稻壳 Rice husk | 400 | 蒸馏水 Distilled water | 盆栽 Pot | 水稻 Rice | ↑ | ● | [ |
水稻秸秆 Rice straw | 400 | 蒸馏水 Distilled water | 盆栽 Pot | 水稻 Rice | ↑ | ● | [ |
稻壳 Rice husk | 650 | 去离子水 Deionized water | 盆栽 Pot | 小麦 Wheat | → | ● | [ |
木屑 Sawdust | 650 | 去离子水 Deionized water | 盆栽 Pot | 小麦 Wheat | → | ● | |
菖蒲 Calamus | 650 | 去离子水 Deionized water | 盆栽 Pot | 小麦 Wheat | ↓ | ● | |
玉米秸秆 Maize straw | 450 | 0.1 mol·L-1 HCl | 盆栽 Pot | 玉米 Corn | ↑ | ● | [ |
小麦秸秆 Wheat straw | 450 | 0.1 mol·L-1 HCl | 盆栽 Pot | 玉米 Corn | ↓ | ● | |
小麦秸秆 Wheat straw | 480 | 去离子水(100℃) Deionized water (100℃) | 盆栽 Pot | 不结球白菜 Chinese cabbage | ↑ | ↑ | [ |
玉米秸秆 Maize straw | 500 | 去离子水(100℃) Deionized water (100℃) | 盆栽 Pot | 不结球白菜 Chinese cabbage | ↑ | ↑ | |
小麦秸秆 Wheat straw | 350 | 去离子水(100℃) Deionized water (100℃) | 盆栽 Pot | 不结球白菜 Chinese cabbage | ↑ | ↑ | [ |
450 | 去离子水(100℃) Deionized water (100℃) | 盆栽 Pot | 不结球白菜 Chinese cabbage | ↑ | ↑ | ||
550 | 去离子水(100℃) Deionized water (100℃) | 盆栽 Pot | 不结球白菜 Chinese cabbage | → | → | ||
小麦秸秆 Wheat straw | 400 | 0.02 mol·L-1 KOH | 盆栽 Pot | 大蒜 Garlic | → | ↑ | [ |
450 | 0.02 mol·L-1 KOH | 盆栽 Pot | 大蒜 Garlic | → | ↑ | ||
500 | 0.02 mol·L-1 KOH | 盆栽 Pot | 大蒜 Garlic | → | ↑ | ||
玉米秸秆 Maize straw | 450 | 木醋液 Wood vinegar | 田间试验 Plot | 空心菜 Water spinach | ↑ | ↑ | [ |
[1] |
潘根兴, 卞荣军, 程琨. 从废弃物处理到生物质制造业: 基于热裂解的生物质科技与工程. 科技导报, 2017, 35(23): 82-93. doi: 10.3981/j.issn.1000-7857.2017.23.013.
doi: 10.3981/j.issn.1000-7857.2017.23.013 |
PAN G X, BIAN R J, CHENG K. From biowaste treatment to novel bio-material manufacturing: Biomaterial science and technology based on biomass pyrolysis. Science & Technology Review, 2017, 35(23): 82-93. doi: 10.3981/j.issn.1000-7857.2017.23.013. (in Chinese)
doi: 10.3981/j.issn.1000-7857.2017.23.013 |
|
[2] |
LIU W J, LI W W, JIANG H, YU H Q. Fates of chemical elements in biomass during its pyrolysis. Chemical Reviews, 2017, 117(9): 6367-6398. doi: 10.1021/acs.chemrev.6b00647.
doi: 10.1021/acs.chemrev.6b00647 |
[3] |
LEHMANN J, GAUNT J, RONDON M. Bio-char sequestration in terrestrial ecosystems-A review. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 403-427. doi: 10.1007/s11027-005-9006-5.
doi: 10.1007/s11027-005-9006-5 |
[4] |
BOLAN N, HOANG S A, BEIYUAN J Z, GUPTA S, HOU D Y, KARAKOTI A, JOSEPH S, JUNG S, KIM K H, KIRKHAM M B, KUA H W, KUMAR M, KWON E E, OK Y S, PERERA V, RINKLEBE J, SHAHEEN S M, SARKAR B, SARMAH A K, SINGH B P, SINGH G, TSANG D C W, VIKRANT K, VITHANAGE M, VINU A, WANG H L, WIJESEKARA H, YAN Y B, YOUNIS S A, VAN ZWIETEN L. Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 2021, 67(2): 1-51. doi: 10.1080/09506608.2021.1922047.
doi: 10.1080/09506608.2021.1922047 |
[5] |
BIEDERMAN L A, HARPOLE W S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy, 2013, 5(2): 202-214. doi: 10.1111/gcbb.12037.
doi: 10.1111/gcbb.12037 |
[6] |
KLEINER K. The bright prospect of biochar. Nature Climate Change, 2009, 1(906): 72-74. doi: 10.1038/climate.2009.48.
doi: 10.1038/climate.2009.48 |
[7] |
LIU X Y, ZHANG A F, JI C Y, JOSEPH S, BIAN R J, LI L Q, PAN G X, PAZ-FERREIRO J. Biochar's effect on crop productivity and the dependence on experimental conditions—A meta-analysis of literature data. Plant and Soil, 2013, 373(1/2): 583-594. doi: 10.1007/s11104-013-1806-x.
doi: 10.1007/s11104-013-1806-x |
[8] |
PRENDERGAST-MILLER M T, DUVALL M, SOHI S P. Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. European Journal of Soil Science, 2014, 65(1): 173-185. doi: 10.1111/ejss.12079.
doi: 10.1111/ejss.12079 |
[9] |
TAGHIZADEH-TOOSI A, CLOUGH T J, SHERLOCK R R, CONDRON L M. Biochar adsorbed ammonia is bioavailable. Plant and Soil, 2012, 350(1/2): 57-69. doi: 10.1007/s11104-011-0870-3.
doi: 10.1007/s11104-011-0870-3 |
[10] |
YUAN J H, XU R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management, 2011, 27(1): 110-115. doi: 10.1111/j.1475-2743.2010.00317.x.
doi: 10.1111/j.1475-2743.2010.00317.x. |
[11] |
GUL S, WHALEN J K, THOMAS B W, SACHDEVA V, DENG H Y. Physico-chemical properties and microbial responses in biochar- amended soils: Mechanisms and future directions. Agriculture, Ecosystems & Environment, 2015, 206: 46-59. doi: 10.1016/j.agee.2015.03.015.
doi: 10.1016/j.agee.2015.03.015 |
[12] |
LIN Y, MUNROE P, JOSEPH S, KIMBER S, ZWIETEN L. Nanoscale organo-mineral reactions of biochars in ferrosol: An investigation using microscopy. Plant and Soil, 2012, 357(1/2): 369-380. doi: 10.1007/s11104-012-1169-8.
doi: 10.1007/s11104-012-1169-8 |
[13] |
QU X L, FU H Y, MAO J D, RAN Y, ZHANG D N, ZHU D Q. Chemical and structural properties of dissolved black carbon released from biochars. Carbon, 2016, 96: 759-767. doi: 10.1016/j.carbon.2015.09.106.
doi: 10.1016/j.carbon.2015.09.106 |
[14] |
YUAN J, MENG J, LIANG X, YANG E, YANG X, CHEN W F. Organic molecules from biochar leacheates have a positive effect on rice seedling cold tolerance. Frontiers in Plant Science, 2017, 8: 1624. doi: 10.3389/fpls.2017.01624.
doi: 10.3389/fpls.2017.01624 |
[15] |
HAGEMANN N, JOSEPH S, SCHMIDT H P, KAMMANN C I, HARTER J, BORCH T, YOUNG R B, VARGA K, TAHERYMOOSAVI S, ELLIOTT K W, MCKENNA A, ALBU M, MAYRHOFER C, OBST M, CONTE P, DIEGUEZ-ALONSO A, ORSETTI S, SUBDIAGA E, BEHRENS S, KAPPLER A. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature Communications, 2017, 8: 1089. doi: 10.1038/s41467-017-01123-0.
doi: 10.1038/s41467-017-01123-0 |
[16] |
BIAN R J, LI L, SHI W, MA B, JOSEPH S, LI L Q, LIU X Y, ZHENG J F, ZHANG X H, CHENG K, PAN G X. Pyrolysis of contaminated wheat straw to stabilize toxic metals in biochar but recycle the extract for agricultural use. Biomass and Bioenergy, 2018, 118: 32-39. doi: 10.1016/j.biombioe.2018.08.003.
doi: 10.1016/j.biombioe.2018.08.003 |
[17] | 时薇, 卞荣军, 郑聚锋, 刘晓雨, 张旭辉, 李恋卿, 潘根兴. 基于高通量测序技术分析生物质炭可溶性组分处理不结球白菜叶片的转录组学分析. 南京农业大学学报, 2020, 43(4): 674-681. |
SHI W, BIAN R J, ZHENG J F, LIU X Y, ZHANG X H, LI L Q, PAN G X. Transcriptome analysis of non-heading Chinese cabbage treated with dissolved components of biochar based on high- throughput sequencing technology. Journal of Nanjing Agricultural University, 2020, 43(4): 674-681. (in Chinese) | |
[18] |
VIGER M, HANCOCK R D, MIGLIETTA F, TAYLOR G. More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar. GCB Bioenergy, 2015, 7(4): 658-672. doi: 10.1111/gcbb.12182.
doi: 10.1111/gcbb.12182 |
[19] |
ANDERSON C R, CONDRON L M, CLOUGH T J, FIERS M, STEWART A, HILL R A, SHERLOCK R R. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 2011, 54(5/6): 309-320. doi: 10.1016/j.pedobi.2011.07.005.
doi: 10.1016/j.pedobi.2011.07.005 |
[20] |
RIEDEL T, IDEN S, GEILICH J, WIEDNER K, DURNER W, BIESTER H. Changes in the molecular composition of organic matter leached from an agricultural topsoil following addition of biomass- derived black carbon (biochar). Organic Geochemistry, 2014, 69: 52-60. doi: 10.1016/j.orggeochem.2014.02.003.
doi: 10.1016/j.orggeochem.2014.02.003 |
[21] |
NGUELEU S K, GRATHWOHL P, CIRPKA O A. Altered transport of lindane caused by the retention of natural particles in saturated porous media. Journal of Contaminant Hydrology, 2014, 162/163: 47-63. doi: 10.1016/j.jconhyd.2014.05.002.
doi: 10.1016/j.jconhyd.2014.05.002 |
[22] |
WANG Y Y, JING X R, LI L L, LIU W J, TONG Z H, JIANG H. Biotoxicity evaluations of three typical biochars using a simulated system of fast pyrolytic biochar extracts on organisms of three kingdoms. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 481-488. doi: 10.1021/acssuschemeng.6b01859.
doi: 10.1021/acssuschemeng.6b01859 |
[23] |
FIMMEN R L, CORY R M, CHIN Y P, TROUTS T D, MCKNIGHT D M. Probing the oxidation-reduction properties of terrestrially and microbially derived dissolved organic matter. Geochimica et Cosmochimica Acta, 2007, 71(12): 3003-3015. doi: 10.1016/j.gca.2007.04.009.
doi: 10.1016/j.gca.2007.04.009 |
[24] | 娄颖梅. 生物质炭浸提液成分分析及其蔬菜喷施应用研究[D]. 南京: 南京农业大学, 2015. |
LOU Y M. Analysis of water extract from biochar and its application on vegetable growth as foliar spray[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese) | |
[25] |
GRABER E R, TSECHANSKY L, LEW B, COHEN E. Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe. European Journal of Soil Science, 2014, 65(1): 162-172. doi: 10.1111/ejss.12071.
doi: 10.1111/ejss.12071 |
[26] |
SUN Y Q, XIONG X N, HE M J, XU Z B, HOU D Y, ZHANG W H, OK Y S, RINKLEBE J, WANG L L, TSANG D C W. Roles of biochar-derived dissolved organic matter in soil amendment and environmental remediation: A critical review. Chemical Engineering Journal, 2021, 424: 130387. doi: 10.1016/j.cej.2021.130387.
doi: 10.1016/j.cej.2021.130387 |
[27] |
SELBERG A, VIIK M, EHAPALU K, TENNO T. Content and composition of natural organic matter in water of Lake Pitkjärv and mire feeding Kuke River (Estonia). Journal of Hydrology, 2011, 400(1/2): 274-280. doi: 10.1016/j.jhydrol.2011.01.035.
doi: 10.1016/j.jhydrol.2011.01.035 |
[28] |
李婉秋, 施暖暖, Marios Drosos, 李恋卿, 潘根兴. 秸秆生物质炭DOM光谱特征及其与Cu2+的相互作用. 中国环境科学, 2021, 41(8): 3714-3722. doi: 10.19674/j.cnki.issn1000-6923.20210326.003.
doi: 10.19674/j.cnki.issn1000-6923.20210326.003 |
LI W Q, SHI N N, DROSOS M, LI L Q, PAN G X. DOM spectral characteristics of straw biochar and its interaction with Cu2+. China Environmental Science, 2021, 41(8): 3714-3722. doi: 10.19674/j.cnki.issn1000-6923.20210326.003. (in Chinese)
doi: 10.19674/j.cnki.issn1000-6923.20210326.003 |
|
[29] |
LI M, ZHANG A F, WU H M, LIU H, LV J L. Predicting potential release of dissolved organic matter from biochars derived from agricultural residues using fluorescence and ultraviolet absorbance. Journal of Hazardous Materials, 2017, 334: 86-92. doi: 10.1016/j.jhazmat.2017.03.064.
doi: 10.1016/j.jhazmat.2017.03.064 |
[30] |
SMITH C R, HATCHER P G, KUMAR S, LEE J W. Investigation into the sources of biochar water-soluble organic compounds and their potential toxicity on aquatic microorganisms. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2550-2558. doi: 10.1021/acssuschemeng.5b01687.
doi: 10.1021/acssuschemeng.5b01687 |
[31] | 马彪. 生物质炭化下原料与产物性质的关系及规模化生产系统的评价[D]. 南京: 南京农业大学, 2017. |
MA B. The relationship between biomass and biochar properties under biomass carbonization and the evaluation of large-scale production system[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese) | |
[32] |
KIM H B, KIM J G, KIM T, ALESSI D S, BAEK K. Mobility of arsenic in soil amended with biochar derived from biomass with different lignin contents: relationships between lignin content and dissolved organic matter leaching. Chemical Engineering Journal, 2020, 393: 124687. doi: 10.1016/j.cej.2020.124687.
doi: 10.1016/j.cej.2020.124687 |
[33] |
LIU C H, CHU W Y, LI H, BOYD S A, TEPPEN B J, MAO J D, LEHMANN J, ZHANG W. Quantification and characterization of dissolved organic carbon from biochars. Geoderma, 2019, 335: 161-169. doi: 10.1016/j.geoderma.2018.08.019.
doi: 10.1016/j.geoderma.2018.08.019 |
[34] |
DOREZ G, FERRY L, SONNIER R, TAGUET A, LOPEZ-CUESTA J M. Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. Journal of Analytical and Applied Pyrolysis, 2014, 107: 323-331. doi: 10.1016/j.jaap.2014.03.017.
doi: 10.1016/j.jaap.2014.03.017 |
[35] |
LIN Y, MUNROE P, JOSEPH S, HENDERSON R, ZIOLKOWSKI A. Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere, 2012, 87(2): 151-157. doi: 10.1016/j.chemosphere.2011.12.007.
doi: 10.1016/j.chemosphere.2011.12.007 |
[36] |
WU H M, QI Y S, DONG L, ZHAO X, LIU H. Revealing the impact of pyrolysis temperature on dissolved organic matter released from the biochar prepared from Typha orientalis. Chemosphere, 2019, 228: 264-270. doi: 10.1016/j.chemosphere.2019.04.143.
doi: 10.1016/j.chemosphere.2019.04.143 |
[37] |
ZHANG P, HUANG P, XU X J, SUN H W, JIANG B, LIAO Y H. Spectroscopic and molecular characterization of biochar-derived dissolved organic matter and the associations with soil microbial responses. Science of the Total Environment, 2020, 708: 134619. doi: 10.1016/j.scitotenv.2019.134619.
doi: 10.1016/j.scitotenv.2019.134619 |
[38] |
YANG F, ZHANG Q, JIAN H X, WANG C P, XING B S, SUN H W, HAO Y L. Effect of biochar-derived dissolved organic matter on adsorption of sulfamethoxazole and chloramphenicol. Journal of Hazardous Materials, 2020, 396: 122598. doi: 10.1016/j.jhazmat.2020.122598.
doi: 10.1016/j.jhazmat.2020.122598 |
[39] |
RAJAPAKSHA A U, OK Y S, EL-NAGGAR A, KIM H, SONG F H, KANG S, TSANG Y F. Dissolved organic matter characterization of biochars produced from different feedstock materials. Journal of Environmental Management, 2019, 233: 393-399. doi: 10.1016/j.jenvman.2018.12.069.
doi: 10.1016/j.jenvman.2018.12.069 |
[40] |
GUI X Y, LIU C, LI F Y, WANG J F. Effect of pyrolysis temperature on the composition of DOM in manure-derived biochar. Ecotoxicology and Environmental Safety, 2020, 197: 110597. doi: 10.1016/j.ecoenv.2020.110597.
doi: 10.1016/j.ecoenv.2020.110597 |
[41] |
UCHIMIYA M, OHNO T, HE Z Q. Pyrolysis temperature-dependent release of dissolved organic carbon from plant, manure, and biorefinery wastes. Journal of Analytical and Applied Pyrolysis, 2013, 104: 84-94. doi: 10.1016/j.jaap.2013.09.003.
doi: 10.1016/j.jaap.2013.09.003 |
[42] |
BIAN R J, JOSEPH S, SHI W, LI L, TAHERYMOOSAVI S, PAN G X. Biochar DOM for plant promotion but not residual biochar for metal immobilization depended on pyrolysis temperature. Science of the Total Environment, 2019, 662: 571-580. doi: 10.1016/j.scitotenv.2019.01.224.
doi: 10.1016/j.scitotenv.2019.01.224 |
[43] |
JAMIESON T, SAGER E, GUÉGUEN C. Characterization of biochar-derived dissolved organic matter using UV-visible absorption and excitation-emission fluorescence spectroscopies. Chemosphere, 2014, 103: 197-204. doi: 10.1016/j.chemosphere.2013.11.066.
doi: 10.1016/j.chemosphere.2013.11.066 |
[44] |
LI G, KHAN S, IBRAHIM M, SUN T R, TANG J F, COTNER J B, XU Y Y. Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium. Journal of Hazardous Materials, 2018, 348: 100-108. doi: 10.1016/j.jhazmat.2018.01.031.
doi: 10.1016/j.jhazmat.2018.01.031 |
[45] |
HUANG M, LI Z W, LUO N L, YANG R, WEN J J, HUANG B, ZENG G M. Application potential of biochar in environment: insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals. Science of the Total Environment, 2019, 646: 220-228. doi: 10.1016/j.scitotenv.2018.07.282.
doi: 10.1016/j.scitotenv.2018.07.282 |
[46] |
CAYUELA M L, VAN ZWIETEN L, SINGH B P, JEFFERY S, ROIG A, SÁNCHEZ-MONEDERO M A. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture, Ecosystems & Environment, 2014, 191: 5-16. doi: 10.1016/j.agee.2013.10.009.
doi: 10.1016/j.agee.2013.10.009 |
[47] |
HAMEED R, CHENG L L, YANG K, FANG J, LIN D H. Endogenous release of metals with dissolved organic carbon from biochar: Effects of pyrolysis temperature, particle size, and solution chemistry. Environmental Pollution, 2019, 255: 113253. doi: 10.1016/j.envpol.2019.113253.
doi: 10.1016/j.envpol.2019.113253 |
[48] |
JI M Y, ZHOU L, ZHANG S C, LUO G, SANG W J. Effects of biochar on methane emission from paddy soil: Focusing on DOM and microbial communities. Science of the Total Environment, 2020, 743: 140725. doi: 10.1016/j.scitotenv.2020.140725.
doi: 10.1016/j.scitotenv.2020.140725 |
[49] |
ZHANG A F, BIAN R J, LI L Q, WANG X D, ZHAO Y, HUSSAIN Q, PAN G X. Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy. Environmental Science and Pollution Research International, 2015, 22(23): 18977-18986. doi: 10.1007/s11356-015-4967-8.
doi: 10.1007/s11356-015-4967-8 |
[50] |
HUANG M, LI Z W, CHEN M, WEN J J, LUO N L, XU W H, DING X, XING W L. Dissolved organic matter released from rice straw and straw biochar: Contrasting molecular composition and lead binding behaviors. Science of the Total Environment, 2020, 739: 140378. doi: 10.1016/j.scitotenv.2020.140378.
doi: 10.1016/j.scitotenv.2020.140378 |
[51] |
JAISWAL A K, ALKAN N, ELAD Y, SELA N, PHILOSOPH A M, GRABER E R, FRENKEL O. Molecular insights into biochar- mediated plant growth promotion and systemic resistance in tomato against Fusarium crown and root rot disease. Scientific Reports, 2020, 10(1): 13934. doi: 10.1038/s41598-020-70882-6.
doi: 10.1038/s41598-020-70882-6 |
[52] |
WEI J, TU C, YUAN G D, BI D X, WANG H L, ZHANG L J, THENG B K G. Pyrolysis temperature-dependent changes in the characteristics of biochar-borne dissolved organic matter and its copper binding properties. Bulletin of Environmental Contamination and Toxicology, 2019, 103(1): 169-174. doi: 10.1007/s00128-018-2392-7.
doi: 10.1007/s00128-018-2392-7 |
[53] |
DONG X L, MA L Q, GRESS J, HARRIS W, LI Y C. Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important role of dissolved organic matter from biochar. Journal of Hazardous Materials, 2014, 267: 62-70. doi: 10.1016/j.jhazmat.2013.12.027.
doi: 10.1016/j.jhazmat.2013.12.027 |
[54] |
KIM H B, KIM J G, KIM S H, KWON E E, BAEK K. Consecutive reduction of Cr(VI) by Fe(II) formed through photo-reaction of iron-dissolved organic matter originated from biochar. Environmental Pollution, 2019, 253: 231-238. doi: 10.1016/j.envpol.2019.07.026.
doi: 10.1016/j.envpol.2019.07.026 |
[55] |
QUAN G X, FAN Q Y, ZIMMERMAN A R, SUN J X, CUI L Q, WANG H L, GAO B, YAN J L. Effects of laboratory biotic aging on the characteristics of biochar and its water-soluble organic products. Journal of Hazardous Materials, 2020, 382: 121071. doi: 10.1016/j.jhazmat.2019.121071.
doi: 10.1016/j.jhazmat.2019.121071 |
[56] | 郑聚锋, 程琨, 潘根兴. 生物质炭施用对深层土壤碳库的影响. 南京农业大学学报, 2020, 43(4): 589-593. |
ZHENG J F, CHENG K, PAN G X. Impact of biochar application on deep soil organic carbon pool. Journal of Nanjing Agricultural University, 2020, 43(4): 589-593. (in Chinese) | |
[57] |
LOU Y M, JOSEPH S, LI L Q, GRABER E R, LIU X Y, PAN G X. Water extract from straw biochar used for plant growth promotion: An initial test. BioResources, 2015, 11(1): 249-266. doi: 10.15376/biores.11.1.249-266.
doi: 10.15376/biores.11.1.249-266 |
[58] |
GAO T, BIAN R J, JOSEPH S, TAHERYMOOSAVI S, MITCHELL D R G, MUNROE P, XU J H, SHI J R. Wheat straw vinegar: a more cost-effective solution than chemical fungicides for sustainable wheat plant protection. Science of the Total Environment, 2020, 725: 138359. doi: 10.1016/j.scitotenv.2020.138359.
doi: 10.1016/j.scitotenv.2020.138359 |
[59] |
E Y, MENG J, HU H J, CHEN W F. Chemical composition and potential bioactivity of volatile from fast pyrolysis of rice husk. Journal of Analytical and Applied Pyrolysis, 2015, 112: 394-400. doi: 10.1016/j.jaap.2015.02.021.
doi: 10.1016/j.jaap.2015.02.021 |
[60] |
E Y, MENG J, HU H J, CHENG D M, ZHU C F, CHEN W F. Effects of organic molecules from biochar-extracted liquor on the growth of rice seedlings. Ecotoxicology and Environmental Safety, 2019, 170: 338-345. doi: 10.1016/j.ecoenv.2018.11.108.
doi: 10.1016/j.ecoenv.2018.11.108 |
[61] |
GRABER E R, TSECHANSKY L, MAYZLISH-GATI E, SHEMA R, KOLTAI H. A humic substances product extracted from biochar reduces Arabidopsis root hair density and length under P-sufficient and P-starvation conditions. Plant and Soil, 2015, 395(1/2): 21-30. doi: 10.1007/s11104-015-2524-3.
doi: 10.1007/s11104-015-2524-3 |
[62] | 袁珺. 生物炭表面有机分子对水稻幼苗抗寒性的影响[D]. 沈阳: 沈阳农业大学, 2018. |
YUAN J. Organic molecules from the suface of biochar have effects on rice seedling cold tolerance[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese) | |
[63] |
SUN J L, DROSOS M, MAZZEI P, SAVY D, TODISCO D, VINCI G, PAN G X, PICCOLO A. The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination. Science of the Total Environment, 2017, 576: 858-867. doi: 10.1016/j.scitotenv.2016.10.095.
doi: 10.1016/j.scitotenv.2016.10.095 |
[64] |
卓亚鲁, 李磊, 郑金伟, 刘晓雨, 李恋卿, 潘根兴. 生物质炭浸提液对大蒜生长品质及土壤的影响. 水土保持通报, 2017, 37(5): 81-85. doi: 10.13961/j.cnki.stbctb.2017.05.014.
doi: 10.13961/j.cnki.stbctb.2017.05.014 |
ZHUO Y L, LI L, ZHENG J W, LIU X Y, LI L Q, PAN G X. Effects of biochar extract on growth quality of garlic and soil properties. Bulletin of Soil and Water Conservation, 2017, 37(5): 81-85. doi: 10.13961/j.cnki.stbctb.2017.05.014. (in Chinese)
doi: 10.13961/j.cnki.stbctb.2017.05.014 |
|
[65] |
王盼, 郑庭茜, 卞荣军, 李恋卿, 潘根兴. 基于生物质裂解活性有机物的有机-无机水溶肥对空心菜产量、品质及养分的影响. 土壤通报, 2018, 49(6): 1377-1382. doi: 10.19336/j.cnki.trtb.2018.06.16.
doi: 10.19336/j.cnki.trtb.2018.06.16 |
WANG P, ZHENG T X, BIAN R J, LI L Q, PAN G X. Effects on yield, quality and nutrients of water spinach by organic/inorganic water-soluble fertilizer based on bioactive extracts from biomass pyrolysis. Chinese Journal of Soil Science, 2018, 49(6): 1377-1382. doi: 10.19336/j.cnki.trtb.2018.06.16. (in Chinese)
doi: 10.19336/j.cnki.trtb.2018.06.16 |
|
[66] |
LIU M L, LIN Z, KE X L, FAN X R, JOSEPH S, TAHERYMOOSAVI S, LIU X Y, BIAN R J, SOLAIMAN Z M, LI L Q, PAN G X. Rice seedling growth promotion by biochar varies with genotypes and application dosages. Frontiers in Plant Science, 2021, 12: 580462. doi: 10.3389/fpls.2021.580462.
doi: 10.3389/fpls.2021.580462 |
[67] |
ELAD Y, DAVID D R, HAREL Y M, BORENSHTEIN M, KALIFA H B, SILBER A, GRABER E R. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology, 2010, 100(9): 913-921. doi: 10.1094/PHYTO-100-9-0913.
doi: 10.1094/PHYTO-100-9-0913 |
[68] |
GONDEK K, MIERZWA-HERSZTEK M, BARAN A, SZOSTEK M, PIENIĄŻEK R, PIENIĄŻEK M, STANEK-TARKOWSKA J, NOGA T. The effect of low-temperature conversion of plant materials on the chemical composition and ecotoxicity of biochars. Waste and Biomass Valorization, 2017, 8(3): 599-609. doi: 10.1007/s12649-016-9621-2.
doi: 10.1007/s12649-016-9621-2 |
[69] |
SUN D Q, MENG J, LIANG H, YANG E, HUANG Y W, CHEN W F, JIANG L L, LAN Y, ZHANG W M, GAO J P. Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities. Journal of Soils and Sediments, 2015, 15(2): 271-281. doi: 10.1007/s11368-014-0996-z.
doi: 10.1007/s11368-014-0996-z |
[70] |
GEZAHEGN S, SAIN M, THOMAS S C. Phytotoxic condensed organic compounds are common in fast but not slow pyrolysis biochars. Bioresource Technology Reports, 2021, 13: 100613. doi: 10.1016/j.biteb.2020.100613.
doi: 10.1016/j.biteb.2020.100613 |
[71] |
肖婧, 徐虎, 蔡岸冬, 黄敏, 张琪, 孙楠, 张文菊, 徐明岗. 生物质炭特性及施用管理措施对作物产量影响的整合分析. 中国农业科学, 2017, 50(10): 1827-1837. doi: 10.3864/j.issn.0578-1752.2017.10.008.
doi: 10.3864/j.issn.0578-1752.2017.10.008 |
XIAO J, XU H, CAI A D, HUANG M, ZHANG Q, SUN N, ZHANG W J, XU M G. A meta-analysis of effects of biochar properties and management practices on crop yield. Scientia Agricultura Sinica, 2017, 50(10): 1827-1837. doi: 10.3864/j.issn.0578-1752.2017.10.008. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.10.008 |
[1] | 李慧,尹士采,郭宗香,马好运,任梓齐,折冬梅,梅向东,宁君. 宽胫夜蛾性信息素类似物的合成及其生物活性[J]. 中国农业科学, 2022, 55(9): 1790-1799. |
[2] | 任梓齐,康玉洁,李海珍,王连刚,马好运,李慧,王留洋,梅向东,宁君. 陌夜蛾性信息素类似物的合成及其生物活性[J]. 中国农业科学, 2022, 55(23): 4640-4650. |
[3] | 钟佳霖,许觜妍,张怡云,李婕,刘晓雨,李恋卿,潘根兴. 原料、炭化温度和生物质炭组分对小白菜生长的影响[J]. 中国农业科学, 2022, 55(14): 2775-2785. |
[4] | 刘泓,郭玉杰,许雄,李侠,张鸿儒,齐立伟,孙雪梅,张春晖. 不同畜禽骨蛋白肽的制备、理化特性表征及其生物活性[J]. 中国农业科学, 2022, 55(13): 2629-2642. |
[5] | 刘小强,蒋红波,李慧敏,熊英,王进军. 赤拟谷盗章鱼胺受体3(TcOctβR3)cDNA克隆、表达及功能[J]. 中国农业科学, 2018, 51(7): 1315-1324. |
[6] | 孙建飞,郑聚锋,程琨,叶仪,庄园,潘根兴. 面向自愿减排碳交易的生物质炭基肥固碳减排计量方法研究[J]. 中国农业科学, 2018, 51(23): 4470-4484. |
[7] | 肖婧,徐虎,蔡岸冬,黄敏,张琪,孙楠,张文菊,徐明岗. 生物质炭特性及施用管理措施对作物产量影响的整合分析[J]. 中国农业科学, 2017, 50(10): 1827-1837. |
[8] | 何玉亭,王昌全,沈杰,李斌,李冰,陈林,潘兴兵. 两种生物质炭对红壤团聚体结构稳定性和微生物群落的影响[J]. 中国农业科学, 2016, 49(12): 2333-2342. |
[9] | 葛顺峰, 彭玲, 任饴华, 姜远茂. 秸秆和生物质炭对苹果园土壤容重、阳离子 交换量和氮素利用的影响[J]. 中国农业科学, 2014, 47(2): 366-373. |
[10] | 赵次娴, 陈香碧, 黎蕾, 肖和友, 刘坤平, 何寻阳, 苏以荣. 添加蔗渣生物质炭对农田土壤有机碳矿化的影响[J]. 中国农业科学, 2013, 46(5): 987-994. |
[11] | 罗楚平1, 2, 王晓宇1, 周华飞1, 2, 刘邮洲1, 陈志谊1, 2. 生防菌Bs916合成脂肽抗生素泛革素的 操纵子结构功能及生物活性[J]. 中国农业科学, 2013, 46(24): 5142-5149. |
[12] | 殷素侠, 廖美德, 徐汉虹. 光敏蛋白脂质体的制备与生物活性[J]. 中国农业科学, 2013, 46(1): 60-68. |
[13] | 关连珠, 赵亚平, 张广才, 张昀, 颜丽. 玉米秸秆生物质炭对外源金霉素的吸持与解吸[J]. 中国农业科学, 2012, 45(24): 5057-5064. |
[14] | 张斌, 刘晓雨, 潘根兴, 郑聚锋, 池忠志, 李恋卿, 张旭辉, 郑金伟. 施用生物质炭后稻田土壤性质、水稻产量和 痕量温室气体排放的变化[J]. 中国农业科学, 2012, 45(23): 4844-4853. |
[15] | 方祖凯, 王勇, 李俊凯, 杜铁钢, 兰腾芳. N-苯氧苯基取代的α-氨基酸衍生物的合成及生物活性[J]. 中国农业科学, 2011, 44(24): 4999-5005. |
|