中国农业科学 ›› 2022, Vol. 55 ›› Issue (13): 2629-2642.doi: 10.3864/j.issn.0578-1752.2022.13.012
刘泓1(),郭玉杰1(),许雄1,李侠1,张鸿儒1,齐立伟1,孙雪梅2,张春晖1()
收稿日期:
2021-11-10
接受日期:
2022-01-12
出版日期:
2022-07-01
发布日期:
2022-07-08
通讯作者:
郭玉杰,张春晖
作者简介:
刘泓,E-mail: 基金资助:
LIU Hong1(),GUO YuJie1(),XU Xiong1,LI Xia1,ZHANG HongRu1,QI LiWei1,SUN XueMei2,ZHANG ChunHui1()
Received:
2021-11-10
Accepted:
2022-01-12
Online:
2022-07-01
Published:
2022-07-08
Contact:
YuJie GUO,ChunHui ZHANG
摘要:
【目的】制备骨蛋白肽(livestock and poultry bone peptides,LBPs)用于功能性骨源食品的开发是畜禽骨副产物高值化加工利用的重要途径之一。选取4种主要畜禽骨原料基于相同工艺分别制备LBPs,对比分析其理化特性与生物活性,为功能性骨源食品的开发及畜禽骨资源的高值化加工利用提供参考。【方法】以牦牛腿骨、黄牛腿骨、猪腿骨及鸡腿骨为原料分别制备牦牛骨蛋白肽(yak bone peptides,YBPs)、黄牛骨蛋白肽(bovine bone peptides,BBPs)、猪骨蛋白肽(porcine bone peptides,PBPs)、鸡骨蛋白肽(chicken bone peptides,CBPs),并对4种LBPs基本营养组分、氨基酸组成、分子量分布、粒径分布等理化性质进行表征;对比分析4种LBPs的促成骨细胞增殖、促巨噬细胞增殖、血管紧张素转换酶抑制(angiotensin converting enzyme inhibitors,ACEI)、抗氧化等生物活性差异。【结果】YBPs、BBPs和PBPs粗蛋白含量分别为(89.70±0.77)%、(90.43±0.88)%和(89.36±1.32)%,显著高于CBPs((79.18±1.49)%);4种LBPs均缺乏色氨酸,CBPs的必需氨基酸和含硫氨基酸均显著高于YBPs、BBPs和PBPs;4种LBPs主要由MW<2 kD的小分子多肽片段组成,占比约90%;LBPs粉体粒径分布差异不显著,主要集中于10—20 µm和40—60 µm范围内;不同种源LBPs生物活性特征分析发现:YBPs促成骨细胞增殖效应最显著,0.5 mg∙mL-1时的促增殖率达37.27%;BBPs促巨噬细胞增殖效应最强,5 mg∙mL-1时的促增殖率达39.26%;PBPs的ACEI活性最强,15 mg∙mL-1时ACE活性抑制率为82.37%;与BBPs、PBPs和CBPs相比,YBPs的综合抗氧化能力最强。【结论】4种不同种源LBPs的理化特性存在一定的差异,但符合功能性骨源食品的原料要求。不同种源LBPs的生物活性存在一定的差异,因而适宜于不同功能性骨源食品的开发:YBPs的促成骨细胞增殖效应及综合抗氧化能力最强,更适宜于改善骨健康及抗氧化类功能性骨源食品的开发;BBPs的促巨噬细胞增殖效应最强,更适宜于开发免疫调节类功能性骨源食品;PBPs的ACEI活性最高,更适宜于开发血压控制类功能性骨源食品;CBPs具备更优良的粉体性质及更高的矿物质含量,可用作膳食营养补充剂。
刘泓,郭玉杰,许雄,李侠,张鸿儒,齐立伟,孙雪梅,张春晖. 不同畜禽骨蛋白肽的制备、理化特性表征及其生物活性[J]. 中国农业科学, 2022, 55(13): 2629-2642.
LIU Hong,GUO YuJie,XU Xiong,LI Xia,ZHANG HongRu,QI LiWei,SUN XueMei,ZHANG ChunHui. Preparation, Physicochemical Characterization and Bioactivity Comparison of Different Livestock and Poultry Bone Peptides[J]. Scientia Agricultura Sinica, 2022, 55(13): 2629-2642.
表3
畜禽骨蛋白肽的氨基酸组成"
氨基酸 Amino acids | FAO/WHO推荐摄入量 FAO/WHO recommended intake (mg/kg body weight/day) | 含量 Content (g/100 g) | |||
---|---|---|---|---|---|
YBPs | BBPs | PBPs | CBPs | ||
天冬酰胺Asp | - | 5.08±0.27a | 5.21±0.40a | 5.07±0.27a | 5.27±0.09a |
谷氨酸Glu | - | 9.75±0.35ab | 9.29±0.75b | 9.39±0.41b | 10.47±0.21a |
苏氨酸Thr* | 7 | 1.82±0.05b | 1.69±0.15b | 1.79±0.09b | 2.20±0.04a |
丝氨酸Ser | - | 2.80±0.12a | 2.69±0.24a | 2.70±0.06a | 2.24±0.05b |
甘氨酸Gly | - | 19.6±0.61b | 22.64±1.13a | 20.05±1.30b | 14.26±0.20c |
丙氨酸Ala | - | 8.26±0.24b | 9.18±0.21a | 8.13±0.39b | 6.65±0.10c |
脯氨酸Pro | - | 10.4±1.03a | 11.07±0.64a | 10.95±0.53a | 8.03±0.16b |
羟脯氨酸Hyp | - | 9.39±0.85a | 9.91±1.58a | 8.37±00.91b | 7.46±0.33c |
苯丙氨酸Phe* | 14 | 1.85±0.08a | 1.78±0.08a | 1.93±0.12a | 1.91±0.05a |
酪氨酸Tyr | 0.68±0.01a | 0.54±0.02b | 0.63±0.05a | 0.57±0.02b | |
半胱氨酸Cys | 13 | 0.02±0.01a | 0.02±0.00a | 0.05±0.01a | 0.05±0.00a |
蛋氨酸Met* | 0.75±0.03b | 0.74±0.02b | 0.73±0.01b | 1.04±0.07a | |
缬氨酸Val* | 10 | 2.44±0.08a | 2.49±0.07a | 2.47±0.17a | 2.04±0.04b |
异亮氨酸Ile* | 10 | 1.46±0.05b | 1.43±0.10b | 1.21±0.08c | 1.83±0.07a |
亮氨酸Leu* | 14 | 3.34±0.11a | 3.05±0.19b | 3.00±0.18b | 3.61±0.11a |
赖氨酸Lys* | 12 | 3.29±0.10a | 3.08±0.21a | 3.22±0.20a | 3.39±0.06a |
羟赖氨酸Hyl | - | 1.13±0.11a | 1.09±0.06a | 0.69±0.03b | 0.56±0.02c |
组氨酸His | - | 0.84±0.03a | 0.69±0.01b | 0.75±0.03b | 0.87±0.04a |
精氨酸Arg | - | 6.81±0.18b | 7.32±0.22a | 6.62±0.41b | 5.44±0.13c |
总计 Total | |||||
氨基酸总量 Total amino acids | - | 89.81 | 93.91 | 87.75 | 77.32 |
含硫氨基酸1) Sulphur-amino acids | 0.77 | 0.76 | 0.78 | 1.09 | |
芳香族氨基酸2) Aromatic amino acids | 2.53 | 2.32 | 2.56 | 2.48 | |
疏水性氨基酸3) Hydrophilic amino acids | 28.59 | 29.74 | 28.42 | 24.54 | |
亲水性氨基酸4) Hydrophobic amino acids | 50.70 | 53.17 | 50.27 | 44.76 | |
亚氨基酸5) Imino acid | 19.88 | 20.98 | 19.32 | 15.49 | |
必需氨基酸* Essential amino acids | 17.40 | 16.65 | 16.82 | 18.54 | |
氨基酸比值系数分 SRC | 100 | 72.81 | 73.44 | 71.17 | 53.67 |
[1] |
LI F, JIA D Y, YAO K. Amino acid composition and functional properties of collagen polypeptide from Yak (Bos grunniens) bone. LWT - Food Science and Technology, 2009, 42(5): 945-949.
doi: 10.1016/j.lwt.2008.12.005 |
[2] |
姚玉梅, 袁湘汝, 韩鲁佳, 杨增玲, 刘贤. 畜禽骨蛋白质材料化利用的研究现状与发展趋势分析. 材料导报, 2021, 35(17): 17136-17142. doi: 10.11896/cldb.20060129.
doi: 10.11896/cldb.20060129 |
YAO Y M, YUAN X R, HAN L J, YANG Z L, LIU X. Progress and prospect of materializing utilization in bone waste protein from animal by-products. Materials Review, 2021, 35(17): 17136-17142. doi: 10.11896/cldb.20060129. (in Chinese)
doi: 10.11896/cldb.20060129 |
|
[3] |
YE M L, ZHANG C H, ZHU L Y, JIA W, SHEN Q S. Yak (Bos grunniens) bones collagen-derived peptides stimulate osteoblastic proliferation and differentiation via the activation of Wnt/β-catenin signaling pathway. Journal of the Science of Food and Agriculture, 2020, 100(6): 2600-2609.
doi: 10.1002/jsfa.10286 |
[4] |
SHEN Q S, ZHANG C H, QIN X J, ZHANG H R, ZHANG Z Q, RICHEL A. Modulation of gut microbiota by chondroitin sulfate calcium complex during alleviation of osteoporosis in ovariectomized rats. Carbohydrate Polymers, 2021, 266: 118099. doi: 10.1016/j.carbpol.2021.118099.
doi: 10.1016/j.carbpol.2021.118099 |
[5] |
WANG J N, LIU J L, GUO Y C. Cell growth stimulation cell cycle alternation and anti-apoptosis effects of bovine bone collagen hydrolysates derived peptides on MC3T3-E1 cells ex vivo. Molecules, 2020, 25(10): 2305.
doi: 10.3390/molecules25102305 |
[6] |
YE M L, ZHANG C H, JIA W, SHEN Q S, QIN X J, ZHANG H R, ZHU L Y. Metabolomics strategy reveals the osteogenic mechanism of yak (Bos grunniens) bone collagen peptides on ovariectomy-induced osteoporosis in rats. Food & Function, 2020, 11(2): 1498-1512. doi: 10.1039/c9fo01944h.
doi: 10.1039/c9fo01944h |
[7] |
ZHU L Y, XIE Y Y, WEN B T, YE M L, LIU Y S, KHANDAKER M S U I, CAI H M, ZHANG C H, WANG F Z, XIN F J. Porcine bone collagen peptides promote osteoblast proliferation and differentiation by activating the PI3K/Akt signaling pathway. Journal of Functional Foods, 2020, 64: 103697.
doi: 10.1016/j.jff.2019.103697 |
[8] | 刘丽莉, 马美湖, 杨协力. 畜禽骨中胶原多肽的开发及研究进展. 食品科学, 2009, 30(S1): 225-228. |
LIU L L, MA M H, YANG X L. Development and research progress of collagen peptides in animal bone. Food Science, 2009, 30(S1): 225-228. (in Chinese) | |
[9] | FERRARO V, ANTON M, SANTE-LHOUTELLIER V. The “sisters” α-helices of collagen, elastin and keratin recovered from animal by-products: Functionality, bioactivity and trends of application. Trends in Food Science & Technology, 2016, 51: 65-75. |
[10] | 艾瑞咨询. 2015-2020年中国肉骨粉产业发展现状及市场监测报告. 北京: 艾瑞咨询集团, 2021. |
iResearch. Development status and market monitoring report of meat and bone meal industry in China from 2015 to 2020. Beijing: iResearch Consulting Group, 2021. (in Chinese) | |
[11] |
QIN X J, SHEN Q S, GUO Y J, LI X, LIU J Q, YE M L, WANG H, JIA W, ZHANG C H. Physicochemical properties, digestibility and anti-osteoporosis effect of yak bone powder with different particle sizes. Food Research International, 2021, 145: 110401.
doi: 10.1016/j.foodres.2021.110401 |
[12] |
GAO S, HONG H, ZHANG C Y, WANG K, ZHANG B H, HAN Q A, LIU H G, LUO Y K. Immunomodulatory effects of collagen hydrolysates from yak (Bos grunniens) bone on cyclophosphamide- induced immunosuppression in BALB/c mice. Journal of Functional Foods, 2019, 60: 103420.
doi: 10.1016/j.jff.2019.103420 |
[13] | 秦倩倩. 超声波预处理对草鱼皮胶原蛋白特性和酶解产物活性的影响[D]. 镇江: 江苏科技大学, 2019. |
QIN Q Q. Effects of ultrasound pretreatment on properties of collagen from grass carp skin and activities of its hydrolysates[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019. (in Chinese) | |
[14] |
蔡丽华, 马美湖. 牛骨酶解产生血管紧张素I转换酶抑制肽的研究. 食品科学, 2009, 30(z1): 13-19.
doi: 10.1111/j.1365-2621.1965.tb00254.x |
CAI L H, MA M H. The study on peptide of angiotensin coverting enzyme inhibitory peptides (ACEIP) from hydrolysis ox bone. Food Science, 2009, 30(z1): 13-19. (in Chinese)
doi: 10.1111/j.1365-2621.1965.tb00254.x |
|
[15] |
刘小红, 李诚, 付刚, 苏赵. 猪股骨头胶原蛋白降血压肽的分离纯化. 食品科学, 2014, 35(6): 50-54. doi: 10.7506/spkx1002-6630-2014060010.
doi: 10.7506/spkx1002-6630-2014060010 |
LIU X H, LI C, FU G, SU Z. Separation and purification of anti-hypertensive peptides from pig femoral collagen. Food Science, 2014, 35(6): 50-54. doi: 10.7506/spkx1002-6630-2014060010. (in Chinese)
doi: 10.7506/spkx1002-6630-2014060010 |
|
[16] |
张根生, 符群, 岳晓霞, 韩冰. 鸡骨胶原蛋白肽抗氧化性的研究. 食品科学, 2009, 30(13): 133-135. doi: 10.3321/j.issn:1002-6630.2009.13.031.
doi: 10.3321/j.issn:1002-6630.2009.13.031 |
ZHANG G S, FU Q, YUE X X, HAN B. Antioxidation of collagen peptides from chicken bone. Food Science, 2009, 30(13): 133-135. doi: 10.3321/j.issn:1002-6630.2009.13.031. (in Chinese)
doi: 10.3321/j.issn:1002-6630.2009.13.031 |
|
[17] |
KU S K, SEO D W, KIM S I, SIM K H. Antioxidant activities and nutritional properties of Jeonyak prepared with beef bone stock and gelatin. Food Science and Biotechnology, 2014, 23(1): 81-87. doi: 10.1007/s10068-014-0011-x.
doi: 10.1007/s10068-014-0011-x |
[18] |
ABDUALRAHMAN M A, MA H L, ZHOU C S, YAGOUB A E, HU J L, Y X. Thermal and single frequency counter-current ultrasound pretreatments of sodium caseinate: Enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution and antioxidant peptides. Journal of the Science of Food and Agriculture, 2016, 96(15): 4861-4873.
doi: 10.1002/jsfa.7996 |
[19] |
王耀松, 张唯唯, 马天怡, 蔡敏, 张怡帆, 胡荣蓉, 唐长波. 丙二醛氧化对核桃分离蛋白结构及乳化性的影响. 中国农业科学, 2020, 53(16): 3372-3384. doi: 10.3864/j.issn.0578-1752.2020.16.014.
doi: 10.3864/j.issn.0578-1752.2020.16.014 |
WANG Y S, ZHANG W W, MA T Y, CAI M, ZHANG Y F, HU R R, TANG C B. Influence of oxidative modification by malondialdehyde on structure and emulsifying properties of walnut protein. Scientia Agricultura Sinica, 2020, 53(16): 3372-3384. doi: 10.3864/j.issn.0578-1752.2020.16.014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.16.014 |
|
[20] |
李宇, 汪芳, 翁泽斌, 宋海昭, 沈新春. 酶法制备大豆蛋白成骨活性肽. 中国农业科学, 2021, 54(13): 2885-2894. doi: 10.3864/j.issn.0578-1752.2021.13.016.
doi: 10.3864/j.issn.0578-1752.2021.13.016 |
LI Y, WANG F, WENG Z B, SONG H Z, SHEN X C. Preparation of soybean protein-derived pro-osteogenic peptides via enzymatic hydrolysis. Scientia Agricultura Sinica, 2021, 54(13): 2885-2894. doi: 10.3864/j.issn.0578-1752.2021.13.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.13.016 |
|
[21] |
崔小珍, 栾艳, 李婷婷, 杨裕, 关文超, 张凯, 王福传, 宋献艺. 松针多糖对鸡巨噬细胞HD11的天然免疫调节. 中国农业科学, 2020, 53(15): 3180-3186. doi: 10.3864/j.issn.0578-1752.2020.15.017.
doi: 10.3864/j.issn.0578-1752.2020.15.017 |
CUI X Z, LUAN Y, LI T T, YANG Y, GUAN W C, ZHANG K, WANG F C, SONG X Y. Innate immunomodulatory effect of pine needle polysaccharide on chicken macrophage HD11. Scientia Agricultura Sinica, 2020, 53(15): 3180-3186. doi: 10.3864/j.issn.0578-1752.2020.15.017. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.15.017 |
|
[22] | 陈静. 小米主要营养成分快速检测模型建立及其降压功效研究[D]. 北京: 中国农业大学, 2017. |
CHEN J. Study on rapid determination of main nutrition compositions and hypotensive effect of foxtail millet[D]. Beijing: China Agricultural University, 2017. (in Chinese) | |
[23] |
LIMA C A, CAMPOS J F, FILHO J L L, CONVERTI A, CUNHA M G C, PORTO A L F. Antimicrobial and radical scavenging properties of bovine collagen hydrolysates produced by Penicillium aurantiogriseum URM 4622 collagenase. Journal of Food Science and Technology, 2015, 52(7): 4459-4466. doi: 10.1007/s13197-014-1463-y.
doi: 10.1007/s13197-014-1463-y |
[24] |
SIOW H L, GAN C Y. Extraction of antioxidative and antihypertensive bioactive peptides from Parkia speciosa seeds. Food Chemistry, 2013, 141(4): 3435-3442. doi: 10.1016/j.foodchem.2013.06.030.
doi: 10.1016/j.foodchem.2013.06.030 |
[25] |
GIRGIH A T, UDENIGWE C C, ALUKO R E. Reverse-phase HPLC separation of hemp seed (Cannabis sativa L.) protein hydrolysate produced peptide fractions with enhanced antioxidant capacity. Plant Foods for Human Nutrition, 2013, 68(8): 39-46.
doi: 10.1007/s11130-013-0340-6 |
[26] |
JEAMPARKDEE P, PUNTHONG S, SRIMONGKOL P, DANGTANOO P, SAISAVOEY T, KARNCHANATAT A. The apoptotic and free radical-scavenging abilities of the protein hydrolysate obtained from chicken feather meal. Poultry Science, 2020, 99(3): 1693-1704.
doi: 10.1016/j.psj.2019.10.050 |
[27] |
AKRAM A N, ZHANG C H. Effect of ultrasonication on the yield, functional and physicochemical characteristics of collagen-II from chicken sternal cartilage. Food Chemistry, 2020, 307: 125544.
doi: 10.1016/j.foodchem.2019.125544 |
[28] |
AKRAM A N, ZHANG C H. Extraction of collagen-II with pepsin and ultrasound treatment from chicken sternal cartilage; physicochemical and functional properties. Ultrasonics Sonochemistry, 2020, 64: 105053.
doi: 10.1016/j.ultsonch.2020.105053 |
[29] |
ALOYSIUS T A, CARVAJAL A K, SLIZYTE R, SKORVE J, BERGE R K, BJORADAL B. Chicken protein hydrolysates have anti- inflammatory effects on high-fat diet induced obesity in mice. Medicines, 2019, 6(1): 5.
doi: 10.3390/medicines6010005 |
[30] | 蔡丽华. 牛骨酶解制备血管紧张素转换酶抑制肽的研究[D]. 武汉: 华中农业大学, 2010. |
CAI L H. Preparation of angiotensin-converting enzyme inhibitory peptides by hydrolysis of cattle bone[D]. Wuhan: Huazhong Agricultural University, 2010. (in Chinese) | |
[31] | 王玉霞. 鸡骨肽制备及其ACE抑制活性研究[D]. 北京: 中国农业科学院, 2011. |
WANG Y X. Study on the processing technology of chicken bone peptides and its inhibitory activity to ACE[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese) | |
[32] | 王晨. 牛骨胶原多肽的制备及其清除自由基活性研究[D]. 广州: 华南理工大学, 2010. |
WANG C. Enzymatic preparation of ox bone collagen peptide and its free radicals scavenging activity[D]. Guangzhou: South China University of Technology, 2010. (in Chinese) | |
[33] |
马思彤, 刘静波, 张婷, 王莹, 孙惠炎, 魏以恒, 王寒颖, 雷洪辉, 刘博群. 体外模拟胃肠消化及碱性蛋白酶处理后蛋清肽抗氧化活性差异及肽序列解析. 食品科学, 2020, 41(21): 113-120. doi: 10.7506/spkx1002-6630-20191024-255.
doi: 10.7506/spkx1002-6630-20191024-255 |
MA S T, LIU J B, ZHANG T, WANG Y, SUN H Y, WEI Y H, WANG H Y, LEI H H, LIU B Q. Differences in antioxidant activity and sequence analysis of egg white peptides derived from simulated gastrointestinal digestion and alkaline protease treatment. Food Science, 2020, 41(21): 113-120. doi: 10.7506/spkx1002-6630-20191024-255. (in Chinese)
doi: 10.7506/spkx1002-6630-20191024-255 |
|
[34] |
ZHANG H R, ZHAO L Y, SHEN Q S, QI L W, JIANG S, GUO Y J, ZHANG C H, RICHEL A. Preparation of cattle bone collagen peptides-calcium chelate and its structural characterization and stability. LWT-Food Science and Technology, 2021, 144(12): 111264.
doi: 10.1016/j.lwt.2021.111264 |
[35] |
吴晖, 王晨, 李晓凤, 余以刚. 牛骨胶原蛋白肽体外清除自由基活性的研究. 食品工业科技, 2010, 31(4): 156-158, 161. doi: 10.13386/j.issn1002-0306.2010.04.095.
doi: 10.13386/j.issn1002-0306.2010.04.095 |
WU H, WANG C, LI X F, YU Y G. Study on the scavenging activity of free radicals of collagen peptide from ox bone by enzymatic hydrolysis. Science and Technology of Food Industry, 2010, 31(4): 156-158, 161. doi: 10.13386/j.issn1002-0306.2010.04.095. (in Chinese)
doi: 10.13386/j.issn1002-0306.2010.04.095 |
|
[36] |
SHEN W L, MATSUI T. Current knowledge of intestinal absorption of bioactive peptides. Food & Function, 2017, 8(12): 4306-4314. doi: 10.1039/c7fo01185g.
doi: 10.1039/c7fo01185g |
[37] |
TU M L, CHENG S Z, LU W H, DU M. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. TrAC (Trends in Analytical Chemistry), 2018(105): 7-17. doi: 10.1016/j.trac.2018.04.005.
doi: 10.1016/j.trac.2018.04.005 |
[38] | 叶孟亮. 牦牛骨胶原蛋白肽抗骨质疏松作用机制研究[D]. 北京: 中国农业科学院, 2019. |
YE M L. Study on the underlying mechanism of anti-osteoporosis of yak (Bos grunniens) bone collagen peptides[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese) | |
[39] |
叶蕾, 阎洁, 张文, 邹舒舒, 叶盛旺, 杨最素, 余方苗, 丁国芳. 文蛤寡肽对RAW264.7细胞的免疫调节作用. 水产学报, 2019, 43(2): 410-418. doi: 10.11964/jfc.20180411224.
doi: 10.11964/jfc.20180411224 |
YE L, YAN J, ZHANG W, ZOU S S, YE S W, YANG Z S, YU F M, DING G F. Immunomodulatory effects of Meretrix meretrix oligopeptides on RAW264.7 cells. Journal of Fisheries of China, 2019, 43(2): 410-418. doi: 10.11964/jfc.20180411224. (in Chinese)
doi: 10.11964/jfc.20180411224 |
|
[40] | 曾珍, 李诚, 付刚, 杨勇, 何利, 陈姝娟. 猪骨免疫活性肽的分离纯化. 食品与发酵工业, 2014. 40(11): 116-120. |
ZENG Z, LI C, FU G, YANG Y, HE L, CHEN S J. Separation and purification of immunomodulating peptides from pig bones. Food and Fermentation Industries, 2014. 40(11): 116-120. (in Chinese) | |
[41] |
瞿瑗, 李诚, 程乐涛, 夏春明, 晏芳芳. 牦牛骨免疫活性肽的酶解制备研究. 食品工业科技, 2016, 37(3): 271-274, 278. doi: 10.13386/j.issn1002-0306.2016.03.048.
doi: 10.13386/j.issn1002-0306.2016.03.048 |
QU Y, LI C, CHENG L T, XIA C M, YAN F F. Study on yak bone immune active peptide preparation by enzymatic hydrolysis. Science and Technology of Food Industry, 2016, 37(3): 271-274, 278. doi: 10.13386/j.issn1002-0306.2016.03.048. (in Chinese)
doi: 10.13386/j.issn1002-0306.2016.03.048 |
|
[42] |
ZHANG Y H, OLSEN K, GROSSI A, OTTE J. Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides. Food Chemistry, 2013, 141(3): 2343-2354. doi: 10.1016/j.foodchem.2013.05.058.
doi: 10.1016/j.foodchem.2013.05.058 |
[43] | 于小栋. 牦牛骨胶原蛋白肽的制备及其功能特性研究[D]. 西宁: 青海师范大学, 2019. |
YU X D. Preparation and functional properties of yak bone collagen peptide[D]. Xining: Qinghai Normal University, 2019. (in Chinese) | |
[44] |
ZHANG Y H, OLSEN K, GROSSI A. Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides. Food Chemistry, 2013, 141: 2343-2353.
doi: 10.1016/j.foodchem.2013.05.058 |
[45] |
LIU J B, CHEN Z F, HE J, ZHANG Y, ZHANG T, JIANG Y Q. Anti-oxidative and anti-apoptosis effects of egg white peptide, Trp-Asn-Trp-Ala-Asp, against H2O2-induced oxidative stress in human embryonic kidney 293 cells. Food & Function, 2014, 5(12): 3179-3188. doi: 10.1039/c4fo00665h.
doi: 10.1039/c4fo00665h |
[46] |
贾韶千, 李艳霞. 黄鳝鱼骨多肽制备及其抗氧化活性. 食品科学, 2016, 37(1): 133-138. doi: 10.7506/spkx1002-6630-201601024.
doi: 10.7506/spkx1002-6630-201601024 |
JIA S Q, LI Y X. Preparation and antioxidant activity of Monopterus albus bone peptides. Food Science, 2016, 37(1): 133-138. doi: 10.7506/spkx1002-6630-201601024. (in Chinese)
doi: 10.7506/spkx1002-6630-201601024 |
[1] | 李慧,尹士采,郭宗香,马好运,任梓齐,折冬梅,梅向东,宁君. 宽胫夜蛾性信息素类似物的合成及其生物活性[J]. 中国农业科学, 2022, 55(9): 1790-1799. |
[2] | 任梓齐,康玉洁,李海珍,王连刚,马好运,李慧,王留洋,梅向东,宁君. 陌夜蛾性信息素类似物的合成及其生物活性[J]. 中国农业科学, 2022, 55(23): 4640-4650. |
[3] | 崔鹏,赵逸人,姚志鹏,庞林江,陆国权. 低温对甘薯淀粉理化特性及代谢关键基因表达量的影响[J]. 中国农业科学, 2022, 55(19): 3831-3840. |
[4] | 卞荣军,刘晓雨,郑聚锋,程琨,张旭辉,李恋卿,潘根兴. 生物质炭可溶性有机物化学组成及生物活性意义[J]. 中国农业科学, 2022, 55(11): 2174-2186. |
[5] | 牛洪壮,刘洋,李晓萍,韩裕轩,王可可,杨雁,杨千慧,闵东红. 不同HMW-GSs组成小麦籽粒淀粉理化特性对面团稳定时间的影响[J]. 中国农业科学, 2021, 54(23): 4943-4953. |
[6] | 王钰麟,雷琳,熊文文,叶发银,赵国华. 蒸煮-老化预处理对炒制青稞粉理化性质及体外淀粉消化的影响[J]. 中国农业科学, 2021, 54(19): 4207-4217. |
[7] | 古明辉,杨泽莎,马萍,葛鑫禹,刘永峰. 超声波辅助在羊肉多次冻融中保持理化特性及减少蛋白损失的作用[J]. 中国农业科学, 2021, 54(18): 3970-3983. |
[8] | 刘小强,蒋红波,李慧敏,熊英,王进军. 赤拟谷盗章鱼胺受体3(TcOctβR3)cDNA克隆、表达及功能[J]. 中国农业科学, 2018, 51(7): 1315-1324. |
[9] | 苟小菊,田由,郭玉蓉,杨曦,侯燕杰,平嘉欣,李婷. 不同成熟期苹果品种非浓缩还原汁品质评价与分析[J]. 中国农业科学, 2018, 51(19): 3778-3790. |
[10] | 刘希伟,张敏,张玉春,杨敏,宋霄君,蔡瑞国. 灌浆期遮光对糯小麦和非糯小麦淀粉组分及理化特性的影响[J]. 中国农业科学, 2017, 50(9): 1582-1593. |
[11] | 唐忠厚,张爱君,陈晓光,靳容,刘明,李洪民,丁艳锋. 低钾胁迫对甘薯块根淀粉理化特性的影响及其基因型差异[J]. 中国农业科学, 2017, 50(3): 513-525. |
[12] | 李天来,杨丽娟. 专题导读:作物连作障碍的克服——难解的问题[J]. 中国农业科学, 2016, 49(5): 916-918. |
[13] | 张婷,王振宇,李铮,林祖松,李祥,田建文,张德权. 饲喂大麦对大河乌猪干腌火腿理化特性及脂肪酸组成的影响[J]. 中国农业科学, 2016, 49(2): 331-338. |
[14] | 罗楚平1, 2, 王晓宇1, 周华飞1, 2, 刘邮洲1, 陈志谊1, 2. 生防菌Bs916合成脂肽抗生素泛革素的 操纵子结构功能及生物活性[J]. 中国农业科学, 2013, 46(24): 5142-5149. |
[15] | 张晓, 高德荣, 吕国锋, 吴宏亚, 张伯桥, 李曼. 糯小麦与其它作物淀粉特性的比较研究[J]. 中国农业科学, 2013, 46(11): 2183-2190. |
|