中国农业科学 ›› 2020, Vol. 53 ›› Issue (20): 4103-4112.doi: 10.3864/j.issn.0578-1752.2020.20.001
魏广辉1,2(),李执2,陈强2,李阳2,陈诗豪2,裴英2,周勇3,程梦萍3,唐豪3,王际睿1,3,魏育明1,3,刘登才1,3,陈黎4,郑有良1,3,蒲至恩1,2(
)
收稿日期:
2019-12-02
接受日期:
2020-03-07
出版日期:
2020-10-16
发布日期:
2020-10-26
通讯作者:
蒲至恩
作者简介:
魏广辉,E-mail: 基金资助:
WEI GuangHui1,2(),LI Zhi2,CHEN Qiang2,LI Yang2,CHEN ShiHao2,PEI Ying2,ZHOU Yong3,CHENG MengPing3,TANG Hao3,WANG JiRui1,3,WEI YuMing1,3,LIU DengCai1,3,CHEN Li4,ZHENG YouLiang1,3,PU ZhiEn1,2(
)
Received:
2019-12-02
Accepted:
2020-03-07
Online:
2020-10-16
Published:
2020-10-26
Contact:
ZhiEn PU
摘要:
【目的】硒作为人体必不可少的元素之一,在疾病预防与抗氧化方面具有重要作用。小麦作为主要作物之一,是人类获取植物性硒源的主要来源,因此,提高小麦籽粒硒含量是人体补充硒的一条高效、低廉、简单易行的途径。拟通过对已定位到的SNP位点开发KASP标记用于开展高硒小麦选育。【方法】利用已经完成的660K小麦SNP标记的人工合成小麦SHW-L1重组自交系(recombinant inbred lines,RILs)群体,将前期定位的籽粒硒含量相关的QTL区间进一步缩小,开发稳定基因内的SNP位点为KASP标记。【结果】成功开发出2个KASP标记AX-1和AX-2,标记能够在群体中进行基因型分型和鉴定材料籽粒硒含量的相对高低。2个标记都可将供试材料按照基因型分为2类,即高硒和低硒材料,符合1:1的等位基因分离比例。但按照表现型来划分,标记对低硒材料的筛选率(大于90%)要远高于高硒材料(小于30%)。具有高硒含量的表现型材料中,有81%的材料具有高硒的基因型,表明了标记的可靠性。同时,在以人工合成小麦SHW-L1为亲本的其他衍生后代株系中也能用该KASP标记进行基因型分型,分型结果与表型结果一致,说明了标记的有效性,也表明可通过开发到的KASP标记来提升选择效率。【结论】AX-1和AX-2可作为一个实用的分子标记用于SHW-L1为亲本的高硒小麦品种选育和种质资源创制。
魏广辉,李执,陈强,李阳,陈诗豪,裴英,周勇,程梦萍,唐豪,王际睿,魏育明,刘登才,陈黎,郑有良,蒲至恩. 人工合成小麦SHW-L1高硒含量KASP分子标记开发及其应用[J]. 中国农业科学, 2020, 53(20): 4103-4112.
WEI GuangHui,LI Zhi,CHEN Qiang,LI Yang,CHEN ShiHao,PEI Ying,ZHOU Yong,CHENG MengPing,TANG Hao,WANG JiRui,WEI YuMing,LIU DengCai,CHEN Li,ZHENG YouLiang,PU ZhiEn. Development and Utilization of KASP Marker for Se Concentration in Synthetic Wheat SHW-L1[J]. Scientia Agricultura Sinica, 2020, 53(20): 4103-4112.
表2
筛选过LOD值后的QTL结果"
籽粒硒含量 Grain selenium content | 编号 Number | 染色体 Chromosome | 标记 Marker | 位置 Position (cM) | R2 | 加性效应 Additive | LOD |
---|---|---|---|---|---|---|---|
Grain se-1 | 1 | 5A | 22 | 43.62 | 0.0765 | 0.0003 | 2.5551 |
Grain se-2 | 1 | 5A | 13 | 29.54 | 0.0654 | 0.0003 | 2.7476 |
Grain se-2 | 2 | 5A | 16 | 32.66 | 0.0774 | 0.0003 | 3.4722 |
Grain se-2 | 3 | 5A | 21 | 35.58 | 0.0877 | 0.0004 | 3.9723 |
表3
所用SNP标记"
编号 Number | 染色体 Chromosome | 变异碱基 Base | 序列 Sequence (5′-3′) |
---|---|---|---|
AX-1 | 5A | A/G | CGTACCATGCGATCACACTTGGAGATGCGTGTGAG[A/G]GAAAAAGAGTACTCCATCCATCCAAATTCCATCCC |
AX-2 | 5A | A/G | TGTAAATTAATTTGTTGTGGGTAGGGCATCTTGAG[A/G]AATGTTTACCTTCTTGCTGCTGCCTGGTTCGGTTT |
AX-3 | 5A | A/C | GGGTGATAGCAAGGAAGCTGAAGAGCATGATGGAC[A/C]AGGGACAGACGGAAAAGAGTTGCAGGATGGACAAG |
AX-4 | 5A | A/G | GATGACTTTGCGGCAATATTAAGAGATGTGCATCC[A/G]TTAGCAAGCAAGCTAGCGGACAAAACCAGCTTAAC |
AX-5 | 5A | T/C | ACCCCTTGTTTAGTACCACCTCACCAAGTGAGAGT[C/T]ATTTCAACCGGTTTATAAGATTCAGCGTTCCAACC |
[1] |
KÁPOLNA E, HILLESTRØM P R, LAURSEN K H, LARSEN E H, HUSTED S. Effect of foliar application of selenium on its uptake and speciation in carrot. Food Chemistry, 2009,115(4):1357-1363.
doi: 10.1016/j.foodchem.2009.01.054 |
[2] |
唐玉霞, 王慧敏, 杨军方, 吕英华. 河北省冬小麦硒的含量及其高硒技术研究. 麦类作物学报, 2011,31(2):159-163.
doi: 10.7606/j.issn.1009-1041.2011.02.028 |
TANG Y X, WANG H M, YANG J F, LÜ Y H. Studies on the selenium content and selenium enriched technique of winter wheat in Hebei province. Journal of Triticeae Crops, 2011,31(2):159-163. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2011.02.028 |
|
[3] | 梁克红, 卢林纲, 朱宏, 朱大洲, 王晓红. 食物中硒的研究进展. 中国粮油学报, 2018,33(3):134-138. |
LIANG K H, LU L G, ZHU H, ZHU D Z, WANG X H. Research progress of selenium in food. Journal of the Chinese Cereals and Oils Association, 2018,33(3):134-138. (in Chinese) | |
[4] |
THOMSON B M, VANNOORT R W, HASLEMORE R M. Dietary exposure and trends of exposure to nutrient elements iodine, iron, selenium and sodium from the 2003-4 New Zealand Total Diet Survey. British Journal of Nutrition, 2008,99(3):614-625.
doi: 10.1017/S0007114507812001 pmid: 17925056 |
[5] |
THIRY C, RUTTENS A, TEMMERMAN L D, PUSSEMIER L, SCHNEIDR Y J. Current knowledge in species-related bioavailability of selenium in food. Food Chemistry, 2012,130(4):767-784.
doi: 10.1016/j.foodchem.2011.07.102 |
[6] |
AMOAKO P O, UDEN P C, TYSON J F. Speciation of selenium dietary supplements; formation of S-(methylseleno)cysteine and other selenium compounds. Analytica Chimica Acta, 2009,652(1):315-323.
doi: 10.1016/j.aca.2009.08.013 |
[7] | 周喜旺, 刘鸿燕, 王娜, 赵尚文, 魏志平. DNA分子标记技术在小麦遗传育种中的应用综述. 甘肃农业科技, 2017(5):64-68. |
ZHOU X W, LIU H Y, WANG N, ZHAO S W, WEI Z P. Application review of DNA molecular markers technique in wheat genetic breeding.Gansu Agricultural Science and Technology, 2017(5):64-68. (in Chinese) | |
[8] | 高珊. SNP标记在玉米研究上的应用进展. 吉林农业, 2019(24):51. |
GAO S. Application progress of SNP marker in maize research.Agriculture of Jilin, 2019(24):51. (in Chinese) | |
[9] | 王飞. 利用分子标记辅助选育水稻抗稻瘟病新品系[D]. 扬州: 扬州大学, 2015. |
WANG F. Molecular marker-assisted breeding of new rice blast resistance lines[D]. Yangzhou: Yangzhou University, 2015. (in Chinese) | |
[10] |
YU H, XIE W, LI J, ZHOU F S. A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnology Journal, 2014,12(1):28-37.
doi: 10.1111/pbi.12113 pmid: 24034357 |
[11] |
CHEN X, SULLIVAN P F. Single nucleotide polymorphism genotyping: biochemistry, protocol, cost and throughput. Pharmacogenomics Journal, 2003,3(2):77-96.
pmid: 12746733 |
[12] |
SYVÄNEN A C. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nature Reviews Genetics, 2002,2(12):930-942.
doi: 10.1038/35103535 pmid: 11733746 |
[13] |
SEMAGN K, BABU R, HEARNE S, OLSEN S. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement. Molecular Breeding, 2014,33(1):1-14.
doi: 10.1007/s11032-013-9917-x |
[14] |
BISCARINI F, COZZI P, CASELLA L, RICCARDI P. Genome-wide association study for traits related to plant and grain morphology, and root architecture in temperate rice accessions. PLoS ONE, 2016,11(5):e0155425.
pmid: 27228161 |
[15] |
YU L X, CHAO S, SINGH R P. Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat. PLoS ONE, 2017,12(2):e0171963.
doi: 10.1371/journal.pone.0171963 pmid: 28241006 |
[16] | ZENG Q D, WU J H, LIU S J, HUANG S, WANG Q L, MU J M, YU S Z, HAN D J, KANG Z S. A major QTL co-localized on chromosome 6BL and its epistatic interaction for enhanced wheat stripe rust resistance.Theoretical and Applied Genetics, 2019(2):1409-1424. |
[17] | 孙明茂. 水稻籽粒铁、硒、锌、铜等矿质元素和花色苷含量的遗传及QTL分析[D]. 泰安: 山东农业大学, 2006. |
SUN M M. Genetic and QTL analysis of mineral elements and anthocyanin contents of iron, selenium, zinc and copper in rice grains[D]. Taian: Shandong Agricultural University, 2006. (in Chinese) | |
[18] | 张现伟. 水稻籽粒硒、锌含量的QTL定位及遗传效应分析[D]. 重庆: 重庆大学, 2009. |
ZHANG X W. QTL Mapping and genetic effects of selenium and Zinc content in rice grains[D]. Chongqing: Chongqing University, 2009. (in Chinese) | |
[19] | 赵敏. 高硒水稻基因型筛选及水稻和水果高硒、铁、锌技术研究[D]. 武汉: 华中农业大学, 2015. |
ZHAO M. Screening of high selenium rice genotypes and research on high selenium, iron and zinc in rice and fruits[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese) | |
[20] | 陈大清, 钟育海, 李应生, 苏爱国, 朱云芬, 李亚男. 拟南芥耐硒突变体的鉴定及基因定位. 湖北农业科学, 2018(2):115-118. |
CHEN D Q, ZHONG Y H, LI Y S, SU A G, ZHU Y F, LI Y N. Idengtification and location of the selenium resistant gene inArabidopsis thaliana. Hubei Agricultural Science and Technology, 2018(2):115-118. (in Chinese) | |
[21] | 裴英. 小麦硒含量控制基因的QTL定位及遗传分析[D]. 成都: 四川农业大学, 2016. |
PEI Y. QTL Mapping and genetic analysis of selenium content control genes in wheat[D]. Chengdu: Sichuan Agricultural University, 2016. (in Chinese) | |
[22] |
PU Z E, YU M, HE Q Y, CHEN G Y, WANG J R, LIU Y X, JIANG Q T, LI W, DAI S F, WEI Y M, ZHENG Y L. Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. Journal of Integrative Agriculture, 2014,13(11):2322-2329.
doi: 10.1016/S2095-3119(13)60640-1 |
[23] |
PU Z E, PEI Y, YANG J, MA J, LI W, LIU D C, WANG J R, WEI Y M, ZHENG Y L. A QTL located on chromosome 3D enhances the selenium concentration of wheat grain by improving phytoavailability and root structure. Plant and Soil, 2018,425(1/2):287-296.
doi: 10.1007/s11104-017-3556-7 |
[24] | GB/T 22499-2008 《富硒稻谷》. |
GB/T 22499-2008 《Selenium-rich rice》.(in Chinese) | |
[25] | 杨剑. 合成小麦抗穗发芽QTL定位及六个籽粒萌发相关基因分子鉴定[D]. 成都: 四川农业大学, 2016. |
YANG J. QTL mapping for pre-harvest sprouting resistance and molecular characterization of six grain germination-related genes in synthetic wheat[D]. Chengdu: Sichuan Agricultural University, 2016. (in Chinese) | |
[26] | GB 5009. 93-2017《食品安全国家标准食品中硒的测定》. |
GB 5009. 93-2017《National Food Safety Standard Determination of Selenium in Food》. (in Chinese) | |
[27] |
SHARP P J M, KREIS M, SHEWRY P R, GALE M D. Location of β-amylase sequence in wheat and its relatives. Theoretical and Applied Genetics, 1987,75(2):286-290.
doi: 10.1007/BF00303966 |
[28] | 王福亭. 农业试验设计与统计分析. 北京: 中国农业出版社, 1993: 331-342. |
WANG F T. Agricultural Experiment Design and Statistical Analysis. Beijing: China Agriculture Press, 1993: 331-342. (in Chinese) | |
[29] | 苟璐璐, 刘涛, 权文彦, 周露, 程宇坤, 吴雪莲, 叶雪玲, 姚方杰, 杨柳永. 基于一致性QTL区段四川小麦地方品种产量和品质相关性状的遗传分析. 农业生物技术学报, 2016,24(5):657-666. |
GOU L L, LIU T, QUAN W Y, ZHOU L, CHENG Y K, WU X L, YE X L, YAO F J, YANG L Y. Genetic analysis of yield and quality related traits in sichuan wheat (Triticum aestivum) landraces based on consensus QTL regions. Journal of Agricultural Biotechnology, 2016,24(5):657-666. (in Chinese) | |
[30] |
田宇, 杨蕾, 李英慧, 邱丽娟. 抗大豆胞囊线虫SCN3-11位点的KASP标记开发和利用. 作物学报, 2018,44(11):1600-1611.
doi: 10.3724/SP.J.1006.2018.01600 |
TIAN Y, YANG L, LI Y H, QIU L J. Development and utilization of KASP marker for SCN3-11 locus resistant to soybean cyst nematode. Acta Agronomica Sinica , 2018,44(11):1600-1611. (in Chinese)
doi: 10.3724/SP.J.1006.2018.01600 |
|
[31] |
张利莎, 董国清, 扎桑, 卓嘎, 王德良, 谷方红, 袁兴淼, 张京, 郭刚刚. 基于EST-SSR和SNP标记的大麦麦芽纯度检测. 作物学报, 2015,41(8):1147-1154.
doi: 10.3724/SP.J.1006.2015.01147 |
ZHANG L S, DONG G Q, ZHA S, ZHUO G, WANG D L, GU F H, YUAN X M, ZHANG J, GUO G G. EST-SSR and SNP markers based barley malt purity detection. Acta Agronomica Sinica, 2015,41(8):1147-1154. (in Chinese)
doi: 10.3724/SP.J.1006.2015.01147 |
|
[32] |
HAO M, ZHANG L Q, ZHAO L B, DAI S F, XIE D, LI Q C, NING S Z, YAN Z H, WU B H, LAN X J, YUAN Z W, HUANG L, WANG J R, ZHENG K, CHEN W S, YU M. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theoretical and Applied Genetics, 2019,132(8):2285-2294.
doi: 10.1007/s00122-019-03354-9 pmid: 31049633 |
[33] | 朱欣果, 万洪深, 李俊, 郑建敏, 唐宗祥, 杨武云. 人工合成小麦育种优势的主基因+多基因混合遗传分析. 南京农业大学学报, 2018,4l(4):625-632. |
ZHU X G, WAN H S, LI J, ZHENG J M, TANG Z X, YANG W Y. Mixed major-gems plpolygenes illlleritance analysis for breeding superiority in synthetic hexaploid wheat. Journal of Nanjing Agricultural University, 2018,4l(4):625-632. (in Chinese) | |
[34] | 张思妮. 人工合成小麦SSR标记的遗传多样性及其与籽粒性状的关联分析[D]. 杨凌: 西北农林科技大学, 2017. |
ZHANG S N. Association analysis of wheat genetic diversity and grain traits with SSR markers[D]. Yangling: Northwest A&F University, 2017. (in Chinese) | |
[35] |
HUANG B, XIN J, DAI H W, ZHOU W J. Effects of interaction between cadmium (Cd) and selenium (Se) on grain yield and Cd and Se accumulation in a hybrid rice (Oryza sativa) system. Journal of Agricultural and Food Chemistry, 2017,65(43):9537-9546.
doi: 10.1021/acs.jafc.7b03316 pmid: 29016122 |
[36] |
LI Y F, ZHAO J, LI Y, LI H J, ZHANG J F, LI B, GAO Y X, CHEN C Y, LUO M Y, HUANG R, LI J. The concentration of selenium matters: A field study on mercury accumulation in rice by selenite treatment in Qingzhen, Guizhou, China. Plant and Soil, 2015,391(1/2):195-205.
doi: 10.1007/s11104-015-2418-4 |
[37] |
QIN X, NIE Z J, LIU H E, ZHAO P, QIN S Y, SHI Z W. Influence of selenium on root morphology and photosynthetic characteristics of winter wheat under cadmium stress. Environmental and Experimental Botany, 2018,150:232-239.
doi: 10.1016/j.envexpbot.2018.03.024 |
[38] |
LIU C L, DING S L, ZHANG A P, HONG K, JIANG H Z, YANG S L, RUAN B P, ZHANG B, DONG G J, GUO L B, GAO Z Y. Development of nutritious rice with high zinc/selenium and low cadmium in grains through QTL pyramiding. Journal of Integrative Plant Biology, 2020.
doi: 10.1111/jipb.13007 pmid: 32877006 |
[39] |
HUANG X Y, ZHAO F J. QTL pyramiding for producing nutritious and safe rice grains. Journal of Integrative Plant Biology, 2020.
pmid: 32877006 |
[1] | 王富强,张建,温常龙,樊秀彩,张颖,孙磊,刘崇怀,姜建福. 基于KASP标记的葡萄品种鉴定[J]. 中国农业科学, 2021, 54(13): 2830-2842. |
[2] | 王丽赛,张丽阳,马雪莲,王良治,邢冠中,杨柳,于涛,吕林,廖秀冬,李素芬,罗绪刚. 我国畜禽饲料资源中微量元素硒含量分布的调查[J]. 中国农业科学, 2019, 52(11): 2011-2020. |
[3] | 穆婷婷,杜慧玲,张福耀,景小兰,郭琦,李志华,刘璋,田岗. 外源硒对谷子生理特性、硒含量及其产量和品质的影响[J]. 中国农业科学, 2017, 50(1): 51-63. |
[4] | 曲航,尼玛扎西,韦泽秀,梅旭荣. 西藏土壤硒状况与富硒青稞生产路径[J]. 中国农业科学, 2015, 48(18): 3645-3653. |
[5] | 汤永禄, 李朝苏, 吴晓丽, 吴春, 杨武云, 黄钢, 马孝玲. 人工合成小麦衍生品种的物质积累、冠层结构及群体光合特性[J]. 中国农业科学, 2014, 47(5): 844-855. |
[6] | 蒋宗勇,王燕,林映才,郑春田,蒋守群,陈芳 . 硒代蛋氨酸对肥育猪血浆和组织硒含量及抗氧化能力的影响[J]. 中国农业科学, 2010, 43(10): 2147-2155 . |
[7] | 刘三才,朱志华,李为喜,刘方,李燕,黄蓉 . 谷子品种资源微量元素硒和蛋白质含量的测定与评价[J]. 中国农业科学, 2009, 42(11): 3812-3818 . |
[8] | . 人工合成小麦中HMW-GS 6+8和1.5+10的品质效应[J]. 中国农业科学, 2008, 41(11): 3465-3476 . |
[9] | 陈锋,夏先春,Manila William,Morten Lillemo,Richard Trethowan,Peňa R J,何中虎. CIMMYT小麦puroindoline基因型的进一步鉴定与分析[J]. 中国农业科学, 2006, 39(8): 1518-1525 . |
[10] | 陈锋,夏先春,王德森,Morten Lillemo,何中虎. CIMMYT人工合成小麦与普通小麦杂交后代籽粒硬度puroindoline基因等位变异检测[J]. 中国农业科学, 2006, 39(03): 440-447 . |
[11] | 兰秀锦,龙 海,刘 千,颜泽洪,魏育明,刘登才,郑有良. 人工合成小麦RSP的LMW-GS基因克隆[J]. 中国农业科学, 2005, 38(08): 1691-1698 . |
|