[1]Shawky S, Sandhu T. Inactivated vaccine for protection against duck virus enteritis. Avian Diseases, 1997, 41: 461-468.
[2]程安春, 汪铭书, 崔恒敏. 鸭瘟鸭病毒性肝炎二联弱毒疫苗的研究1.最佳配比的筛选, 安全性及免疫效力. 畜牧兽医学报, 1996, 26: 466-474.
Cheng A C, Wang M S, Cui H M, Siudy on bivalent attenuated vaccines against DP and DVH 1. the most appropriate proportion, safety and immune efficaycy test. Acta Veterinaria et Zootechnica Sinica, 1996, 26(5): 466-474. (in Chinese)
[3]Islam M, Samad M, Rahman M, Hossain M, Akter S. Assessment of immunologic responses in khaki cambell ducks vaccinated against duck plague. Trends in Pharmacol Sciences, 2005, 4: 36-38.
[4]Shams H. Recent developments in veterinary vaccinology. Veterinary Journal, 2005, 170: 289-299.
[5]刁有祥, 吕桂霞, 郑福英, 王 刚. 一种新型鸭瘟病原的分离鉴定及其特征. 中国兽医学报, 2006, 26(2): 136-139.
Diao Y X, Lv G X, Zheng H Y, Wang G. Isolation and identification and characteristics of the pathogen of a new duck plague. Chinese Veterinary Science, 2006, 26(2): 136-139. (in Chinese)
[6]Spear P G. Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiology, 2004, 6: 401-410.
[7]Kaashoek M J, Rijsewijk F A, Ruuls R C, Keil G M, Thiry E, Pastoret P P, Van Oirschot J T. Virulence, immunogenicity and reactivation of bovine herpesvirus 1 mutants with a deletion in the gC, gG, gI, gE, or in both the gI and gE gene. Vaccine, 1998, 16: 802-809.
[8]Chang Y J, Jiang M, Lubinski J M, King R D, Friedman H M. Implications for herpes simplex virus vaccine strategies based on antibodies produced to herpes simplex virus type 1 glycoprotein gC immune evasion domains. Vaccine, 2005, 23: 4658-4665.
[9]Ober B T, Teufel B, Wiesmuller K H, Jung G, Pfaff E, Saalmuller A, Rziha H J. The porcine humoral immune response against pseudorabies virus specifically targets attachment sites on glycoprotein gC. Journal of Virology, 2000, 74: 1752-1760.
[10]Ober B T, Summerfield A, Mattlinger C, Wiesmuller K H, Jung G, Pfaff E, Saalmuller A, Rziha H J. Vaccine-induced, pseudorabies virus-specific, extrathymic CD4+CD8+ memory T-helper cells in swine. Journal of Virology, 1998, 72: 4866-4873.
[11]Gupta P K, Saini M, Gupta L K, Rao V D, Bandyopadhyay S K, Butchaiah G, Garg G K, Garg S K. Induction of immune responses in cattle with a DNA vaccine encoding glycoprotein C of bovine herpesvirus-1. Veterinaryt Microbiology, 2001, 78: 293-305.
[12]Gogev S, Vanderheijden N, Lemaire M, Schynts F, D'Offay J, Deprez I, Adam M, Eloit M, Thiry E. Induction of protective immunity to bovine herpesvirus type 1 in cattle by intranasal administration of replication-defective human adenovirus type 5 expressing glycoprotein gC or gD. Vaccine, 2002, 20: 1451-1465.
[13]Gerdts V, Jons A, Makoschey B, Visser N, Mettenleiter T C. Protection of pigs against Aujeszky's disease by DNA vaccination. Journal of General Virology, 1997, 78 ( Pt 9): 2139-2146.
[14]Jr.Dubensky T W, Liu M A, Ulmer J B. Delivery systems for gene-based vaccines. Molecular Medicine, 2000, 6: 723-732.
[15]Dupuis M, Denis-Mize K, Woo C, Goldbeck C, Selby M J, Chen M, Otten G R, Ulmer J B, Donnelly J J, Ott G, McDonald D M. Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. Journal of Immunology, 2000, 165: 2850-2858.
[16]Guliyeva Ü, ner F, Özsoy S, Haziroglu R. Chitosan microparticles containing plasmid DNA as potential oral gene delivery system. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 62: 17-25.
[17]Bowman K, Sarkar R, Raut S, Leong K. Gene transfer to hemophilia A mice via oral delivery of FVIII-chitosan nanoparticles. Journal of Controlled Release, 2008, 132: 252-259.
[18]Koping-Hoggard M, Tubulekas I, Guan H, Edwards K, Nilsson M, Varum K M, Artursson P. Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Therapy, 2001, 8: 1108-1121.
[19]Mao H, Roy K, Troung-Le V, Janes K, Lin K, Wang Y, August J, Leong K. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. Journal of Control Release, 2001, 70: 399-421.
[20]Elson C O, Ealding W, Lefkowitz J. A lavage technique allowing repeated measurement of IgA antibody in mouse intestinal secretions. Journal of Immunol Methods, 1984, 67: 101-108.
[21]柳忠辉, 吕昌龙. 免疫学常用实验技术. 北京: 科学出版社, 2002.
Liu Z H, Lv C L. Used Immunological Test Technology. Beijing: Science Press, 2002. (in Chinese)
[22]Ulmer J B, Wahren B, Liu M A. Gene-based vaccines: recent technical and clinical advances. Trends Molecular Medicine, 2006, 12: 216-222.
[23]Chalmers W S. Overview of new vaccines and technologies. Veterinaryt Microbiology, 2006, 117: 25-31.
[24]Wolff J, Malone R, Williams P, Chong W, Acsadi G, Jani A, Felgner P. Direct gene transfer into mouse muscle in vivo. Science, 1990, 247: 1465.
[25]Greenland J R, Letvin N L. Chemical adjuvants for plasmid DNA vaccines. Vaccine, 2007, 25: 3731-3741.
[26]Khatri K, Goyal A K, Gupta P N, Mishra N, Vyas S P. Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. International Journal of Pharmaceutics, 2008, 354: 235-241.
[27]Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher A N, Davis S S. Chitosan as a novel nasal delivery system for vaccines. Advanced Drug Delivery Reviews, 2001, 51: 81-96.
[28]Babiuk S, Mookherjee N, Pontarollo R, Griebel P, van Drunen Littel-van den Hurk S, Hecker R, Babiuk L. TLR9-/- and TLR9+/+ mice display similar immune responses to a DNA vaccine. Immunology, 2004, 113: 114-120.
[29]李琦涵, 姜 莉. 病毒感染的分子生物学. 北京: 化学工业出版社, 2004.
Li Q H, Jiang L. The Molecular Biology of Viral Infection. Beijing: Chemical Industry Press, 2004. (in Chinese) |