[1] |
任长忠, 闫金婷, 董锐, 胡新中. 燕麦营养成分、功能特性及其产品的研究进展. 食品工业科技, 2022, 43(12): 438-446.
|
|
REN C Z, YAN J T, DONG R, HU X Z. Research progress on oat nutrients, functional properties and related products. Science and Technology of Food Industry, 2022, 43(12): 438-446. (in Chinese)
|
[2] |
张波, 任长忠. 燕麦基因组学与分子育种研究进展. 植物学报, 2022, 57(6): 785-791.
doi: 10.11983/CBB22182
|
|
ZHANG B, REN C Z. Advances in oat genomic research and molecular breeding. Chinese Bulletin of Botany, 2022, 57(6): 785-791. (in Chinese)
|
[3] |
王小山, 纪冰沁. 31份燕麦种质主要株型性状比较及遗传分析. 江苏农业科学, 2018, 46(22): 76-79.
|
|
WANG X S, JI B Q. Comparison and genetic analysis of main agronomic characters of 31 oat germplasms. Jiangsu Agricultural Sciences, 2018, 46(22): 76-79. (in Chinese)
|
[4] |
肖雅雯. 农业劳动力转移与农业机械化对中国粮食生产的关联影响分析[D]. 南昌: 南昌大学, 2023.
|
|
XIAO Y W. Union impact of agricultural labor transfer and agricultural mechanization on China's grain production[D]. Nanchang: Nanchang University, 2023. (in Chinese)
|
[5] |
李道亮, 李震. 无人农场系统分析与发展展望. 农业机械学报, 2020, 51(7): 1-12.
|
|
LI D L, LI Z. System analysis and development prospect of unmanned farming. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7): 1-12. (in Chinese)
|
[6] |
GUPTA C, TEWARI V K, MACHAVARAM R, SHRIVASTAVA P. An image processing approach for measurement of chili plant height and width under field conditions. Journal of the Saudi Society of Agricultural Sciences, 2022, 21(3): 171-179.
|
[7] |
KIM W S, LEE D H, KIM Y J, KIM T, LEE W S, CHOI C H. Stereo-vision-based crop height estimation for agricultural robots. Computers and Electronics in Agriculture, 2021, 181: 105937.
|
[8] |
JIANG Y, LI C Y, PATERSON A H. High throughput phenotyping of cotton plant height using depth images under field conditions. Computers and Electronics in Agriculture, 2016, 130: 57-68.
|
[9] |
ANDÚJAR D, RIBEIRO A, FERNÁNDEZ-QUINTANILLA C, DORADO J. Using depth cameras to extract structural parameters to assess the growth state and yield of cauliflower crops. Computers and Electronics in Agriculture, 2016, 122: 67-73.
|
[10] |
DHAMI H, YU K, XU T, ZHU Q, DHAKAL K, FRIEL J, LI S, TOKEKAR P. Crop height and plot estimation for phenotyping from unmanned aerial vehicles using 3D LiDAR// 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020.
|
[11] |
YUAN W A, LI J T, BHATTA M, SHI Y Y, BAENZIGER P S, GE Y F. Wheat height estimation using LiDAR in comparison to ultrasonic sensor and UAS. Sensors, 2018, 18(11): 3731.
|
[12] |
ZHOU L F, GU X H, CHENG S, YANG G J, SHU M Y, SUN Q. Analysis of plant height changes of lodged maize using UAV-LiDAR data. Agriculture, 2020, 10(5): 146.
|
[13] |
JIMENEZ-BERNI J A, DEERY D M, ROZAS-LARRAONDO P, CONDON A T G, REBETZKE G J, JAMES R A, BOVILL W D, FURBANK R T, SIRAULT X R R. High throughput determination of plant height, ground cover, and above-ground biomass in wheat with LiDAR. Frontiers in Plant Science, 2018, 9: 237.
|
[14] |
WALTER J D C, EDWARDS J, MCDONALD G, KUCHEL H. Estimating biomass and canopy height with LiDAR for field crop breeding. Frontiers in Plant Science, 2019, 10: 1145.
doi: 10.3389/fpls.2019.01145
pmid: 31611889
|
[15] |
CHANG Y K, ZAMAN Q U, REHMAN T U, FAROOQUE A A, ESAU T, JAMEEL M W. A real-time ultrasonic system to measure wild blueberry plant height during harvesting. Biosystems Engineering, 2017, 157: 35-44.
|
[16] |
MONTAZEAUD G, LANGRUME C, MOINARD S, GOBY C, DUCANCHEZ A, TISSEYRE B, BRUNEL G. Development of a low cost open-source ultrasonic device for plant height measurements. Smart Agricultural Technology, 2021, 1: 100022.
|
[17] |
BRONSON K F, FRENCH A N, CONLEY M M, BARNES E M. Use of an ultrasonic sensor for plant height estimation in irrigated cotton. Agronomy Journal, 2021, 113(2): 2175-2183.
|
[18] |
WANG X, SINGH D, MARLA S, MORRIS G, POLAND J. Field-based high-throughput phenotyping of plant height in Sorghum using different sensing technologies. Plant Methods, 2018, 14(1): 53.
|
[19] |
TAO H L, FENG H K, XU L J, MIAO M K, YANG G J, YANG X D, FAN L L. Estimation of the yield and plant height of winter wheat using UAV-based hyperspectral images. Sensors, 2020, 20(4): 1231.
|
[20] |
ZHANG Z, LOU Y S, MOSES O A, LI R, MA L, LI J. Hyperspectral vegetation indexes to monitor wheat plant height under different sowing conditions. Spectroscopy Letters, 2020, 53(3): 194-206.
|
[21] |
张凤, 张锦水, 段雅鸣, 杨志. 迁移深度卷积神经网络模型秋粮作物泛化识别. 遥感学报, 2024, 28(3): 661-676.
|
|
ZHANG F, ZHANG J S, DUAN Y M, YANG Z. Transferring deep convolutional neural network models for generalization mapping of autumn crops. National Remote Sensing Bulletin, 2024, 28(3): 661-676. (in Chinese)
|
[22] |
赵威, 马睿, 王佳, 郭宏杰, 许金普. 基于果穗图像的玉米品种分类识别. 中国农业科技导报, 2023, 25(6): 97-106.
|
|
ZHAO W, MA R, WANG J, GUO H J, XU J P. Classification and identification of corn varieties based on ear image. Journal of Agricultural Science and Technology, 2023, 25(6): 97-106. (in Chinese)
|
[23] |
杜甜甜, 南新元, 黄家興, 张文龙, 马志侠. 改进RegNet识别多种农作物病害受害程度. 农业工程学报, 2022, 38(15): 150-158.
|
|
DU T T, NAN X Y, HUANG J X, ZHANG W L, MA Z X. Identifying the damage degree of various crop diseases using an improved RegNet. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(15): 150-158. (in Chinese)
|
[24] |
李阳德, 马晓慧, 王骥. 基于轻量级MobileNet V3-YOLOv4的生长期菠萝成熟度分析. 智慧农业(中英文), 2023, 5(2): 35-44.
|
|
LI Y D, MA X H, WANG J. Pineapple maturity analysis in natural environment based on MobileNet V3-YOLOv4. Smart Agriculture, 2023, 5(2): 35-44. (in Chinese)
doi: 10.12133/j.smartag.SA202211007
|
[25] |
AGARWAL M, GUPTA S K, BISWAS K K. Development of efficient CNN model for Tomato crop disease identification. Sustainable Computing: Informatics and Systems, 2020, 28: 100407.
|
[26] |
HOWARD A, SANDLER M, CHU G, CHEN L C, CHEN B, TAN M X, WANG W J, ZHU Y K, PANG R M, VASUDEVAN V, LE Q V, ADAM H. Searching for MobileNetV3.2019: 1905.02244. https://arxiv.org/abs/1905.02244v5.
|
[27] |
ZOPH B, VASUDEVAN V, SHLENS J, LE Q V. Learning transferable architectures for scalable image recognition. 2017: 1707.07012. https://arxiv.org/abs/1707.07012v4.
|
[28] |
TAN M X, LE Q V. EfficientNetV2: smaller models and faster training. Computer vision and pattern recognition, 2021. https://arxiv.org/abs/2104.00298.
|
[29] |
RADOSAVOVIC I, KOSARAJU R P, GIRSHICK R, HE K M, DOLLÁR P. Designing network design spaces. 2020: 2003. 13678. https://arxiv.org/abs/2003.13678v1.
|
[30] |
HEADY H F. The measurement and value of plant height in the study of herbaceous vegetation. Ecology, 1957, 38(2): 313.
|
[31] |
PÉREZ-HARGUINDEGUY N, DÍAZ S, GARNIER E, LAVOREL S, POORTER H, JAUREGUIBERRY P, BRET-HARTE M S, CORNWELL W K, CRAINE J M, GURVICH D E, URCELAY C, etc. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 2013, 61(3): 167-234.
|
[32] |
KERAS. Adam, 2023. https://keras.io/api/optimizers/adam/.
|
[33] |
KINGMA D P, BA J L. Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, 2015.
|