中国农业科学 ›› 2020, Vol. 53 ›› Issue (15): 2983-3004.doi: 10.3864/j.issn.0578-1752.2020.15.001
徐云碧1,3,4,7(),杨泉女3,郑洪建4,许彦芬2,桑志勤5,郭子锋1,彭海6,张丛2,蓝昊发2,王蕴波3,吴坤生2,陶家军2,张嘉楠2()
收稿日期:
2020-05-06
接受日期:
2020-06-16
出版日期:
2020-08-01
发布日期:
2020-08-06
通讯作者:
徐云碧,张嘉楠
基金资助:
XU Yunbi1,3,4,7(),YANG QuanNü3,ZHENG HongJian4,XU YanFen2,SANG ZhiQin5,GUO ZiFeng1,PENG Hai6,ZHANG Cong2,LAN HaoFa2,WANG YunBo3,WU KunSheng2,TAO JiaJun2,ZHANG JiaNan2()
Received:
2020-05-06
Accepted:
2020-06-16
Online:
2020-08-01
Published:
2020-08-06
Contact:
Yunbi XU,JiaNan ZHANG
摘要:
借助于分子标记进行基因型检测的技术在生物遗传改良等领域发挥着重要的作用。国际跨国种业公司凭借其高通量、自动化、大规模的共享检测平台,基因型检测技术得到广泛应用。随着从3G时代的高成本固相芯片和随机测序式基因型检测(genotyping by sequencing,GBS)发展到成本低、对检测平台要求较低、基于靶向测序基因型检测(genotyping by target sequencing,GBTS)的液相芯片,基因型检测技术完成了向4G时代的转变。在本文中首先介绍了两项最新的GBTS技术(基于多重PCR的GenoPlexs和基于液相探针捕获的GenoBaits)及其原理。同时,发展了可以在单个扩增子内检测多个SNP,称之为多聚单核苷酸多态性(multiple single-nucleotide-polymorphism cluster,mSNP或multiple dispersed nucleotide polymorphism,MNP)的技术,极大地提高了目标位点(扩增子)内变异的检测效率。与GBS和固相芯片相比,GBTS技术具有平台广适性、标记灵活性、检测高效性、信息可加性、支撑便捷性和应用广谱性。同一款标记集(例如玉米40K mSNP),可以获得3种不同的标记形式(40K mSNP、260K SNP和754K单倍型);并可以根据应用场景的需求,通过控制测序深度获得多种不同的标记密度(1—40K mSNP)。GenoPlexs和GenoBaits 2种技术相结合,可广泛应用于生物进化、遗传图谱构建、基因定位克隆、标记性状关联检测(全基因组关联分析——GWAS和混合样本分析——BSA)、后裔鉴定、基因渐渗、基因累加、品种权保护、品种质量监测、转基因成分/基因编辑/伴生生物检测等领域。目前,已经在20余种主要农作物、蔬菜以及部分动物和微生物中开发了GBTS标记50余套,并已广泛应用于上述领域。最后,展望了与未来GBTS应用相关的几个问题,包括便携式、自动化、高通量、智能化检测平台;根据用户需求定制的可变密度、多功能分子检测;GBTS与其他技术(KASP、高密度芯片、BSA策略等)的整合;基于资源共享的开源育种等。这些将推动GBTS技术在动物、植物和微生物遗传改良等领域的广泛应用。
徐云碧,杨泉女,郑洪建,许彦芬,桑志勤,郭子锋,彭海,张丛,蓝昊发,王蕴波,吴坤生,陶家军,张嘉楠. 靶向测序基因型检测(GBTS)技术及其应用[J]. 中国农业科学, 2020, 53(15): 2983-3004.
XU Yunbi,YANG QuanNü,ZHENG HongJian,XU YanFen,SANG ZhiQin,GUO ZiFeng,PENG Hai,ZHANG Cong,LAN HaoFa,WANG YunBo,WU KunSheng,TAO JiaJun,ZHANG JiaNan. Genotyping by Target Sequencing (GBTS) and Its Applications[J]. Scientia Agricultura Sinica, 2020, 53(15): 2983-3004.
表1
靶向测序基因型检测(GBTS)技术的平台与比较优势"
优势 Advantages | 具体特征 Description of advantages | 展望 Prospects | |
---|---|---|---|
平台 Platform | 广适性 Wide suitability | 适合所有二代和三代测序系统,包括Illumina、Ion Torrent和MGI Applicable to the second and third generations of sequencing facilities, including Illumina, Ion Torrent and MGI | 与下一代测序或其他检测设备兼容 Also applicable to the next generation of sequencing and other genotyping facilities |
标记 Markers | 灵活性 Flexibility | 适合各种标记类型(SNP、短SSR、长/短InDel、已知融合基因、甲基化位点);不同的标记密度;一款多用 Suitable for various marker types (SNPs, short SSRs, long/short InDels, known fusion genes and methylated loci), densities and applications | 广泛利用单倍型、LD区段和其他标记衍生物 Wide applications with haplotypes, LD blocks and other marker-derivatives |
检测 Genotyping | 高效性 High efficiency | 样本多重化、多重PCR;开发和升级简便;设计、测试和检测成本低 Sample- and PCR-multiplexing, readily development and upgrade of marker panels, and low cost in design, test and genotyping | 随检测技术进步推动检测的自动化、智能化、超高通量 More robotic, intelligent, and high-throughput with advanced genotyping facilities |
信息 Information | 可加性 Accumulativity | 数据重复率高,缺失数据少;不同时间、地点、项目间的数据可比和累加;整合度高 High duplication rate; less missing; accumulative across times, locations and projects; integrative | 可加性程度随技术进步而增强 Increasingly accumulative with technical advancement |
支撑 Support systems | 便捷性 Less demanding | 不依赖检测技术或专业化的生物信息团队;通用而简化的实验室信息管理系统;通用的信息整合、处理、分析流程 Independent of professional genotyping and informatics supports, manageable through regular LIMS and data integration, treatment and analytical protocols | 随技术进步而更加便捷、快速、智能化 Less demanding, much quicker but more intelligent, with technical development |
应用 Applications | 广谱性 Wide application | 广泛应用于动物、植物、微生物及其互作群体的进化、遗传、育种、知识产权保护等领域 Wide application in the fields of evolution, genetics, breeding and variety right protection in animals, plants and microorganisms | 随着海量信息的累计,将拓展在群体生物学、生态学等领域的应用 Applications extended to population biology and ecology as huge data accumulated |
表2
靶向测序基因型检测(GBTS)的应用"
应用领域 Applications | 40K+ | 30K | 20K | 10K | 5K | 1K | <200 |
---|---|---|---|---|---|---|---|
生物进化Biological evolution | +++ | +++ | ++ | ++ | + | ||
种质资源评价Germplasm evaluation | +++ | +++ | ++ | ++ | + | + | |
分类Classification | +++ | +++ | +++ | +++ | ++ | ++ | |
图谱构建Linkage map construction | +++ | +++ | +++ | ++ | + | + | |
基因定位和克隆Gene mapping/cloning | +++ | +++ | +++ | +++ | ++ | + | |
标记-性状关联Marker-trait association | +++ | ++ | ++ | + | |||
后裔测验Progeny testing | +++ | +++ | +++ | +++ | +++ | +++ | +++ |
基因渐渗Gene introgression | +++ | +++ | +++ | +++ | +++ | ++ | + |
基因累加Gene pyramiding | +++ | +++ | +++ | +++ | ++ | + | + |
品种权保护Variety right protection | +++ | +++ | +++ | +++ | ++ | ++ | + |
质量控制Quality control | +++ | +++ | +++ | +++ | ++ | ++ | + |
生物检测Bioassay | +++ | +++ | +++ | +++ | ++ | + | + |
表3
已经开发的动植物GenoPlexs和GenBaits标记集"
物种名称 Species names | GenoBaits 标记集GenoBaits panels | GenoPlexs 标记集GenoPlexs panels | ||||
---|---|---|---|---|---|---|
40K | 20K | 10K | 500-1K | <100 | 功能标记 Functional markers | |
玉米 Zea mays L. | ● | ● | ● | ● | ○ | |
水稻Oryza sativa L. | ● | ● | ● | ● | ○ | |
棉花Gossypium spp | ● | ○ | ||||
大豆Glycine max (Linn.) Merr. | ● | ● | ● | ● | ||
花生 Arachis hypogaea L. | ● | ● | ● | ● | ||
小麦Triticum aestivum L. | ○ | ○ | ● | ● | ||
谷子 Setaria italica | ● | |||||
大麦 Hordeum vulgare L. | ● | ● | ● | |||
番茄Solanum lycopersicum | ● | ● | ○ | |||
黄瓜 Cucumis sativus L. | ● | ● | ○ | |||
辣椒 Capsicum annuum L. | ● | ● | ○ | |||
西瓜Citrullus lanatus (Thunb.) Matsum. et Nakai | ● | ● | ||||
白菜Brassica pekinensis (Lour.) Rupr. | ● | ● | ||||
荔枝Litchi chinensis Sonn. | ● | |||||
猕猴桃Actinidia spp. | ● | |||||
甘蓝Brassica oleracea L. | ● | |||||
胡萝卜Daucus carota L. var. sativa Hoffm. | ● | |||||
西葫芦Cucurbita pepo L. | ● | |||||
白萝卜 Raphanus sativus | ● | |||||
苹果Malus domestica | ● | |||||
牛Bos holsatiae | ● |
[1] |
DAVEY J W, HOHENLOHE P A, ETTER P D, BOONE J Q, CATCHEN J M, BLAXTER M L. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 2011,12:499-510.
doi: 10.1038/nrg3012 pmid: 21681211 |
[2] | TANKSLEY S D, RICK C M. Isozyme gene linkage map of the tomato: Applications in genetics and breeding. Theoretical and Applied Genetics, 1980,57:161-170. |
[3] | XU Y, XIE C, WAN J, HE Z, PRASANNA B M. Marker-assisted selection in cereals: Platforms, strategies and examples// GUPTA P K, VARSHNEY R K. eds.. Cereal Genomics II. Springer Science+ Business, Media Dordrecht, 2013: 375-411. |
[4] | EATHINGTON S R. Practical applications of molecular technology in the development of commercial maize hybrids// Proceedings of the 60th Annual Corn and Sorghum Seed Research Conference. Chicago [CD-ROM]. 7-9 Dec. 2005. Am. Seed Trad Assoc., Washington, DC. 2005. |
[5] |
XU Y, CROUCH J H. Marker-assisted selection in plant breeding: From publications to practice. Crop Science, 2008,48:391-407.
doi: 10.2135/cropsci2007.04.0191 |
[6] |
XU Y, LI P, ZOU C, LU Y, XIE C, ZHANG X, PRASANNA B M, OLSEN M S. Enhancing genetic gain in the era of molecular breeding. Journal of Experimental Botany, 2017,68:2641-2666.
doi: 10.1093/jxb/erx135 pmid: 28830098 |
[7] |
VOSS-FELS K P, COOPER M, HAYES B J. Accelerating crop genetic gains with genomic selection. Theoretical and Applied Genetics, 2019,132:669-686.
pmid: 30569365 |
[8] |
XU Y, LIU X, FU J, WANG H, WANG J, HUANG C, PRASANNA B M, OLSEN M S, WANG G, ZHANG A. Enhancing genetic gain through genomic selection: From livestock to plants. Plant Communications, 2020,1:100005.
doi: 10.1016/j.xplc.2019.100005 |
[9] |
BURRIDGE A J, WILKINSON P A, WINFIELD M O, BARKER G L A, ALLEN A M, COGHILL J A, WATERFALL C, EDWARDS K J. Conversion of array-based single nucleotide polymorphic markers for use in targeted genotyping by sequencing in hexaploid wheat (Triticum aestivum). Plant Biotechnology Journal, 2018,16:867-876.
doi: 10.1111/pbi.12834 pmid: 28913866 |
[10] |
JOHNSON M G, POKORNY L, DODSWORTH S, BOTIGUÉ L R, COWAN R S, DEVAULT A, EISERHARDT WL, EPITAWALAGE N, FOREST F, KIM J T, LEEBENS-MACK J H, LEITCH I J, MAURIN O, SOLTIS D E, SOLTIS P S, WONG G K S, BAKER W J, WICKETT N J. A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Systematic Biology, 2018,68:594-606.
doi: 10.1093/sysbio/syy086 pmid: 30535394 |
[11] |
GUO Z, WANG H, TAO J, REN Y, XU C, WU K, ZOU C, ZHANG J, XU Y. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Molecular Breeding, 2019,39:37.
doi: 10.1007/s11032-019-0940-4 |
[12] | BAIRD N A, ETTER P D, ATWOOD T S, CURREY M C, SHIVER A L, LEWIS Z A, SELKER E U, CRESKO W A, JOHNSON E A. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE, 2008,3(10):1-7. |
[13] |
ELSHIRE R J, GLAUBITZ J C, SUN Q, POLAND J A, KAWAMOTO K, BUCKLER E S, MITCHELL S E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 2011,6:e19379.
doi: 10.1371/journal.pone.0019379 pmid: 21573248 |
[14] |
MARCHINI J, HOWIE B. Genotype imputation for genome-wide association studies. Nature Reviews Genetics, 2010,11:499-511.
pmid: 20517342 |
[15] |
GLAUBITZ J C, CASSTEVENS T M, LU F, HARRIMAN J, ELSHIRE R J, SUN Q, BUCKLER E S. TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PLoS ONE, 2014,9:e90346.
doi: 10.1371/journal.pone.0090346 pmid: 24587335 |
[16] |
MAMANOVA L, COFFEY A J, SCOTT CE, KOZAREWA I, TURNER E H, KUMAR A, HOWARD E, SHENDURE J, TURNER D J. Target enrichment strategies for next-generation sequencing. Nature Methods, 2010,7:111-118.
pmid: 20111037 |
[17] |
SAMORODNITSKY E, DATTA J, JEWELL B M, HAGOPIAN R, MIYA J, WING M R, DAMODARAN S, LIPPUS J M, REESER J W, BHATT D, TIMMERS C D, ROYCHOWDHURY S. Comparison of custom capture for targeted next-generation DNA sequencing. The Journal of Molecular Diagnostics, 2015,17:64-75.
pmid: 25528188 |
[18] |
CHIA J M, SONG C, BRADBURY P J, COSTICH D, DE LEON N, DOEBLEY J, ELSHIRE R J, GAUT B, GELLER L, GLAUBITZ J C, GORE M, GUILL K E, HOLLAND J, HUFFORD M B, LAI J, LI M, LIU X, LU Y, MCCOMBIE R, NELSON R, POLAND J, PRASANNA B M, PYHÄJÄRVI T, RONG T, SEKHON R S, SUN Q, TENAILLON M I, TIAN F, WANG J, XU X, ZHANG Z, KAEPPLER S M, ROSS-IBARRA J, MCMULLEN M D, BUCKLER E S, ZHANG G, XU Y, WARE D. Maize HapMap2 identifies extant variation from a genome in flux. Nature Genetics, 2012,44:803-807.
doi: 10.1038/ng.2313 |
[19] |
BUKOWSKI R, GUO X, LU Y, ZOU C, HE B, RONG Z, WANG B, XU D, YANG B, XIE C, FAN L, GAO S, XU X, ZHANG G, LI Y, JIAO Y, DOEBLEY J F, ROSS-IBARRA J, LORANT A, BUFFALO V, TOMAY M C, BUCKLER E S, WARE D, LAI J, SUN Q, XU Y. Construction of the third generation Zea mays haplotype map. GigaScience, 2018,7:1-12.
pmid: 29342277 |
[20] | XU Y. Molecular Plant Breeding. Wallingford: CABI Press, 2010. |
[21] |
YU J, BUCKLERE S. Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology, 2006,17:155-160.
doi: 10.1016/j.copbio.2006.02.003 |
[22] |
RAFALSKI J A. Association genetics in crop improvement. Current Opinion in Plant Biology, 2010,13:174-180.
doi: 10.1016/j.pbi.2009.12.004 |
[23] |
WAUGH R, JANNINK J L, MUEHLBAUER G J, RAMSAY L. The emergence of whole genome association scans in barley. Current Opinion in Plant Biology, 2009,12:218-222.
pmid: 19185530 |
[24] | CHAN E K, ROWE H C, KLIEBENSTEIN D J. Understanding the evolution of defense metabolites in Arabidopsis thaliana using genomewide association mapping. Genetics, 2010,85:991-1000. |
[25] |
GIOVANNONI J J, WING R A, GANAL M W, TANKSLEY S D. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Research, 1991,19:6553-6568.
doi: 10.1093/nar/19.23.6553 pmid: 1684420 |
[26] |
MICHELMORE R W, PARAN I, KESSELI R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences of the United States of America, 1991,88:9828-9832.
doi: 10.1073/pnas.88.21.9828 pmid: 1682921 |
[27] |
ZOU C, WANG P, XU Y. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnology Journal, 2016,14:1941-1955.
doi: 10.1111/pbi.12559 pmid: 26990124 |
[28] |
ARORA S, STEUERNAGEL B, GAURAV K, CHANDRAMOHAN S, LONG Y, MATNY O, JOHNSON R, ENK J, PERIYANNAN S, SINGH N, MD HATTA M A, ATHIYANNAN N, CHEEMA J, YU G, KANGARA N, GHOSH S, SZABO L J, POLAND J, BARIANA H D. G. JONES J D G, BENTLEY A R, AYLIFFE M, OLSON E, XU S S, STEFFENSON B J, LAGUDAH E, WULFF B B H. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nature Biotechnology, 2019,37:139-143.
doi: 10.1038/s41587-018-0007-9 pmid: 30718880 |
[29] | 郭韬, 余泓, 邱杰, 李家洋, 韩斌, 林鸿宣. 中国水稻遗传学研究进展与分子设计育种. 中国科学: 生命科学, 2019,30(10):1032-1037. |
GUO T, YU H, QIU J, LI J Y, HAN B, LIN H X. Advances in rice genetics and breeding by molecular design in China. Scientia Sinica (Vitae), 2019,30(10):1032-1037. (in Chinese) | |
[30] | BECKMANN J S, SOLLER M. Restriction fragment length polymorphisms in plant genetic improvement. Oxford Surveys of Plant Molecular and Cell Biology, 1986,3:196-250. |
[31] | TANKSLEY S D, YOUNG N D, PATERSON A H, BONIERBALE M W. RFLP mapping in plant breeding: New tools for an old science. Bio/Technology, 1989,7:257-263. |
[32] | RAGOT M, LEE M. Marker-assisted selection in maize: Current status, potential, limitations and perspectives from the private and public sectors// GUIMARAES E P, RUANE J, SCHERF B D, SONNINO A, DARGIE J D. eds. Marker-Assisted Selection, Current Status and Future Perspectives in Crops, Livestock, Forestry and Fish. Rome: Food and Agriculture Organization of the United Nations Press, 2007: 117-150. |
[33] | CROSBIE T M, EATHINGTON S R, JOHNSON G R, EDWARDS M, REITER R, STARK S, MOHANTY R G, OYERVIDES M, BUEHLER R E, WALKER A K, DOBERT R, DELANNAY X, PERSHING J C, HALL M A, LAMKEY K R. Plant breeding: Past, present and future// LAMKEY K R, LEE M. eds. Plant Breeding: The Arnel R. Hallauer International Symposium. Oxford, UK: Blackwell Press, 2006: 3-50. |
[34] | EDWARDS M, JOHNSON L. RFLPs for rapid recurrent selection// Proceedings of Symposium on Analysis of Molecular Marker Data. Corvallis, Oregon: American Society of Horticultural Science and Crop Science Society of America Press, 1994: 33-40. |
[35] | LEE M. DNA markers and plant breeding programs. Advances in Agronomy, 1995,55:265-344. |
[36] | STAM P. Marker-assisted breeding// VAN OOIJEN J W, JANSEN J. eds. Biometrics in Plant Breeding: Applications of Molecular Markers. Proceedings of the 9th Meeting of EUCARPIA Section on Biometrics in Plant Breeding (1994). Wageningen, Netherlands: Centre for Plant Breeding and Reproduction Research Press, 1995: 32-44. |
[37] |
MEUWISSEN T H, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001,157:1819-1829.
pmid: 11290733 |
[38] |
HEFFNER E L, LORENZ A J, JANNINK J L, SORRELLS M E. Plant breeding with genomic selection: Gain per unit time and cost. Crop Science, 2010,50:1681-1690.
doi: 10.2135/cropsci2009.11.0662 |
[39] |
JONAS E, DE KONING D J. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs. Frontiers in Genetics, 2015,6:49.
doi: 10.3389/fgene.2015.00049 pmid: 25750652 |
[40] | HEITZ A. Intellectual property rights and plant variety protection in relation to demands of the world trade organization and farmers in sub-Saharan Africa// Available at: Proceedings of the Regional Technical Meeting on Seed Policy and Programmes for Sub-Saharan Africa, Abidjan, Cote d’Ivoire, 23-27 November 1998. Available at: http://www.fao.org/ag/agp/AGPS/abidjan/tabcont.htm, 1998. |
[41] | TRIPP R, LOUWAARS N P, EATON D. Intellectual property rights for plant breeding and rural development: Challenges for agricultural policymakers. Agricultural and Rural Development Notes, 2006,12:1-4. |
[42] | 彭海, 方治伟, 李论, 马爱进, 周俊飞, 温常龙, 李甜甜, 唐浩, 陈红, 崔野韩, 张嘉楠, 贾英民, 许娜, 宋书锋, 胡美霞, 符习勤, 赵治海, 梁勇, 徐振江, 高利芬, 陈利红, 韩瑞玺, 张蝶, 张静, 余进文. 《植物品种鉴定 MNP 标记法》国家标准; 标准号:GB/T 38551-2020, 2020. |
PENG H, FANG Z W, LI L, MA A J, ZHOU J F, WEN C L, LI T T, TANG H, CHEN H, CUI Y H, ZHANG J N, JIA Y M, XU N, SONG S F, HU M X, FU X Q, ZHAO Z H, LIANG Y, XU Z J, GAO L F, CHEN L H, HAN R X, ZHANG D, ZHANG J, YU J W. Identification of plant varieties - MNP marker method. National Standard of the P.R.C. GB/T 38551-2020, 2020. (in Chinese) | |
[43] | ISAAA. Brief 54: Global Status of Commercialized Biotech/GM Crops: 2018. http://www.isaaa.org/resources/publications/briefs/54/default.asp, 2019. |
[44] | 彭海, 陈利红, 方治伟, 张嘉楠, 李甜甜, 李论, 崔野韩, 马爱进, 陈红, 周俊飞, 翟文学, 许娜, 梁勇, 高利芬, 宋书锋, 胡美霞, 符习勤, 张静, 余进文. 《植物转基因成份测定目标区域测序法》国家标准; 标准号: GB/T 38570-2020, 2020. |
PENG H, CHEN L H, FANG Z W, ZHANG J N, LI T T, LI L, CUI Y H, MA A J, CHEN H, ZHOU J F, ZHAI W X, XU N, LIANG Y, GAO L F, SONG S F, HU M X, FU X Q, ZHANG J, YU J W. Determination for ingredients of genetically modified plants - Target sequencing methods. National Standard of the P.R.C. GB/T 38570-2020, 2020. (in Chinese) | |
[45] |
CONG L, RAN F A, COX D, LIN S, BARRETTO R, HABIB N, HSU P D, WU X, JIANG W, MARRAFFINI L A, ZHANG F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339:819-823.
doi: 10.1126/science.1229223 |
[46] |
HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157:1262-1278.
pmid: 24906146 |
[47] |
ZHANG Y, PRIBIL M, PALMGREN M, GAO C. A CRISPR way for accelerating improvement of food crops. Nature Food, 2020,1:200-205.
doi: 10.1038/s43016-020-0051-8 |
[48] |
LIU H J, WANG X, XIAO Y, LUO J, QIAO F, YANG W, ZHANG R, MENG Y, SUN J, YAN S, PENG Y, NIU L, JIAN L, SONG W, YAN J, LI C, ZHAO Y, LIU Y, WARBURTON M L, ZHAO J, YAN J. CUBIC: An atlas of genetic architecture promises directed maize improvement. Genome Biology, 2020,21:20.
doi: 10.1186/s13059-020-1930-x pmid: 31980033 |
[49] |
XU C, REN Y, JIAN Y, GUO Z, ZHANG Y, XIE C, FU J, WANG H, WANG G, XU Y, LI P, ZOU C. Development of a maize 55K SNP array with improved genome coverage for molecular breeding. Molecular Breeding, 2017,37:20.
doi: 10.1007/s11032-017-0622-z pmid: 28255264 |
[50] |
SUN C, DONG Z, ZHAO L, REN Y, ZHANG N, CHEN F. The Wheat 660K SNP array demonstrates great potential for marker- assisted selection in polyploid wheat. Plant Biotechnology Journal, 2020,18:1354-1360.
doi: 10.1111/pbi.13361 pmid: 32065714 |
[1] | 邹林翰,周新颖,张泽源,蔚睿,袁梦,宋晓朋,简俊涛,张传量,韩德俊,宋全昊. 小麦周8425B×小偃81重组自交系群体千粒重相关性状的QTL定位及单倍型分析[J]. 中国农业科学, 2022, 55(18): 3473-3483. |
[2] | 梁鹏,张天闻,孟科,邵顺成,邹诗凡,荣轩,强浩,冯登侦. 绵羊ADIPOQ多态性与生长性状的关联分析[J]. 中国农业科学, 2022, 55(11): 2239-2256. |
[3] | 马拴红, 万炯, 梁瑞清, 张雪海, 邱小倩, 孟淑君, 徐宁坤, 林源, 党昆泰, 王琪月, 赵嘉雯, 丁冬, 汤继华. 玉米开花期转录因子候选基因的关联分析[J]. 中国农业科学, 2022, 55(1): 12-25. |
[4] | 翟胜男,刘爱峰,李法计,刘成,郭军,韩冉,訾妍,汪晓璐,吕莹莹,刘建军. 小麦籽粒黄色素含量检测方法的改良与应用[J]. 中国农业科学, 2021, 54(2): 239-247. |
[5] | 孙小芳,刘敏,潘婷敏,龚国淑. 四川玉米小斑病菌交配型组成与育性分析[J]. 中国农业科学, 2021, 54(12): 2547-2558. |
[6] | 张林林,智慧,汤沙,张仁梁,张伟,贾冠清,刁现民. 谷子抽穗时间基因SiTOC1的表达与单倍型变异分析[J]. 中国农业科学, 2021, 54(11): 2273-2286. |
[7] | 张亚飞,彭洁,朱延松,杨胜男,王旭,赵婉彤,江东. 柑橘CCD基因家族鉴定及CcCCD4a对果肉颜色的影响[J]. 中国农业科学, 2020, 53(9): 1874-1889. |
[8] | 代玉立,甘林,滕振勇,杨静民,祁月月,石妞妞,陈福如,杨秀娟. 玉米大斑病菌和小斑病菌交配型多重PCR 检测方法的建立与应用[J]. 中国农业科学, 2020, 53(3): 527-538. |
[9] | 文静,郭勇,邱丽娟. 耐草甘膦转EPSPS/GAT大豆多重PCR检测体系的建立及应用[J]. 中国农业科学, 2020, 53(20): 4127-4136. |
[10] | 张继峰,刘华东,王敬国,刘化龙,孙健,杨洛淼,贾琰,吴文申,郑洪亮,邹德堂. 粳稻分蘖数全基因组关联分析及候选基因的挖掘[J]. 中国农业科学, 2020, 53(16): 3205-3213. |
[11] | 杨宇昕,邹枨. 基于温带和热带玉米群体全基因组FST和XP-EHH的选择信号检测[J]. 中国农业科学, 2019, 52(4): 579-590. |
[12] | 王福军,赵开军. 基因组编辑技术应用于作物遗传改良的进展与挑战[J]. 中国农业科学, 2018, 51(1): 1-16. |
[13] | 滕 菲,李盛有,饶德民,姚兴东,张惠君,敖 雪,王海英,Steven St.Martin,谢甫绨. 超高产大豆砧木对不同年代育成品种光合生理指标和产量性状的影响[J]. 中国农业科学, 2016, 49(23): 4531-4543. |
[14] | 郭小红,王兴才,孟田,张惠君,敖雪,王海英,谢甫绨. 中国辽宁省和美国俄亥俄州育成大豆品种形态、产量和品质性状的比较研究[J]. 中国农业科学, 2015, 48(21): 4240-4253. |
[15] | 王倩1, 2, 毛新国2, 昌小平2, 贾继增2, 刘惠民1, 景蕊莲2. 小麦TaSnRK2.10的多态性及与农艺性状的关联[J]. 中国农业科学, 2014, 47(10): 1865-1877. |
|