中国农业科学 ›› 2021, Vol. 54 ›› Issue (23): 4943-4953.doi: 10.3864/j.issn.0578-1752.2021.23.002
牛洪壮1(),刘洋1(
),李晓萍2,韩裕轩1,王可可1,杨雁1,杨千慧1,闵东红1(
)
收稿日期:
2021-03-02
接受日期:
2021-05-12
出版日期:
2021-12-01
发布日期:
2021-12-06
通讯作者:
闵东红
作者简介:
牛洪壮,Tel:18838916915;E-mail: 基金资助:
NIU HongZhuang1(),LIU Yang1(
),LI XiaoPing2,HAN YuXuan1,WANG KeKe1,YANG Yan1,YANG QianHui1,MIN DongHong1(
)
Received:
2021-03-02
Accepted:
2021-05-12
Online:
2021-12-01
Published:
2021-12-06
Contact:
DongHong MIN
摘要:
【目的】小麦面团由面筋蛋白形成的细丝包裹淀粉构成。面团的流变学特性影响着食品的加工品质。探究淀粉理化特性对面团流变学特性的影响,为阐明淀粉在面团中的作用提供理论依据。【方法】以12个小麦品种或品系为试验材料,这12个试验材料具有3种高分子量麦谷蛋白亚基(HMW-GSs)组合,新麦26、济麦44、西农615和藁城8901的亚基组合为1、7+8、5+10;西农221、西农979、西农633和西农059的亚基组合为1、7+8、2+12;15(85)2A、14(417)0-0-10、小偃22和周麦18的亚基组合为1、7+9、2+12。从试验材料的面粉中提取淀粉并用扫描电子显微镜观察淀粉粒形态,测定并分析淀粉理化性质(淀粉粒分布、直链淀粉含量、相对结晶度、短程有序度和热特性)和面团混揉特性(形成时间和稳定时间)。【结果】12个材料淀粉颗粒中,大淀粉粒呈不规则的椭圆形,小淀粉粒呈不规则椭圆形或多面体。新麦26、济麦44、藁城8901、西农221、西农979和西农059淀粉粒排列紧密,西农615、西农633、15(85)2A、14(417)0-0-10、小偃22和周麦18的淀粉粒排列较为分散,西农979、15(85)2A、小偃22和周麦18中含有较大直径的A型淀粉粒。A型淀粉粒含量越高,B型淀粉粒含量就会越低,B型淀粉粒与A型淀粉粒含量的比值就会越小。当材料间的直链淀粉含量接近时,那么它们的面团稳定时间也较为接近。12个材料淀粉的X射线衍射图相似,均属于A型晶体结构。淀粉的傅里叶变换红外光谱分析表明,新麦26拥有最高的1 045/1 022 cm-1值和最低的1 022/995 cm-1值;周麦18的1 022/995 cm-1值最高,反而1 045/1 022 cm-1值较低。这表明试验材料较高的1 045/1 022 cm-1值通常对应较低的1 022/995 cm-1值。12个试验材料的淀粉特性不同,其面团稳定时间也有显著差异。新麦26、济麦44、西农221、西农979和西农633具有较长的面团稳定时间,其中,新麦26的面团稳定时间远远长于其他材料。【结论】在12个试验材料中,直链淀粉含量(r=0.88,P<0.01)和淀粉短程有序度(r=0.83,P<0.01)与面团的稳定时间呈显著正相关,A型淀粉粒含量(r=0.61,P<0.05)、淀粉相对结晶度(r=0.84,P<0.01)和淀粉糊化焓(r=0.71,P<0.01)与面团稳定时间呈显著负相关。
牛洪壮,刘洋,李晓萍,韩裕轩,王可可,杨雁,杨千慧,闵东红. 不同HMW-GSs组成小麦籽粒淀粉理化特性对面团稳定时间的影响[J]. 中国农业科学, 2021, 54(23): 4943-4953.
NIU HongZhuang,LIU Yang,LI XiaoPing,HAN YuXuan,WANG KeKe,YANG Yan,YANG QianHui,MIN DongHong. Effects of Physicochemical Properties of Wheat (Triticum aestivum L.) Starch with Different HMW-GSs Combinations on Dough Stability[J]. Scientia Agricultura Sinica, 2021, 54(23): 4943-4953.
表1
12个试验材料的形成时间和稳定时间"
试验材料 Varieties | 形成时间 Dough development time (min) | 稳定时间 Dough stability (min) |
---|---|---|
新麦26 Xinmai 26 | 7.05±0.17bc | 41.80±0.16a |
济麦44 Jimai 44 | 6.55±0.19d | 17.66±0.14e |
西农615 Xinong 615 | 6.63±0.21cd | 9.23±0.19f |
藁城8901 Gaocheng 8901 | 7.46±0.14ab | 8.25±0.12g |
西农221 Xinong 221 | 5.36±0.34e | 21.52±0.18b |
西农979 Xinong 979 | 7.30±0.17ab | 20.33±0.18c |
西农633 Xinong 633 | 7.53±0.18a | 19.55±0.12d |
西农059 Xinong 059 | 6.26±0.27d | 7.17±0.16h |
15(85)2A | 4.63±0.22f | 5.96±0.18i |
14(417)0-0-10 | 4.42±0.24f | 5.08±0.19j |
小偃22 Xiaoyan 22 | 5.17±0.15e | 4.06±0.17k |
周麦18 Zhoumai 18 | 2.61±0.19g | 3.14±0.15l |
表2
12个试验材料的淀粉粒数量分布与直链淀粉含量"
试验材料 Varieties | A型淀粉粒含量 A-type starch granule (%) | B型淀粉粒含量 B-type starch granule (%) | B/A值 B/A ratio | 直链淀粉含量 Amylose content (%) |
---|---|---|---|---|
新麦26 Xinmai 26 | 54.34±0.59h | 45.66±0.59a | 0.84 | 24.57±0.19a |
济麦44 Jimai 44 | 57.85±0.66g | 42.15±0.66b | 0.73 | 23.16±0.47b |
西农615 Xinong 615 | 59.99±0.19f | 40.01±0.19c | 0.67 | 20.82±0.29d |
藁城8901 Gaocheng 8901 | 61.45±0.78e | 38.55±0.78d | 0.63 | 19.81±0.15efg |
西农221 Xinong 221 | 65.85±0.36b | 34.15±0.36fg | 0.52 | 22.57±0.37bc |
西农979 Xinong 979 | 64.29±0.28c | 35.71±0.28e | 0.56 | 19.86±0.11ef |
西农633 Xinong 633 | 66.42±0.45b | 33.58±0.45g | 0.51 | 22.22±0.23c |
西农059 Xinong 059 | 69.77±0.63a | 30.23±0.63h | 0.43 | 20.10±0.32e |
15(85)2A | 62.52±0.34d | 37.48±0.34d | 0.60 | 19.18±0.52gh |
14(417)0-0-10 | 66.20±0.47b | 34.13±1.01fg | 0.52 | 18.7±0.25h |
小偃22 Xiaoyan 22 | 64.78±0.42c | 35.22±0.42ef | 0.54 | 19.22±0.13fgh |
周麦18 Zhoumai 18 | 70.11±0.41a | 29.89±0.41h | 0.43 | 18.17±0.41i |
表3
12个试验材料的淀粉相对结晶度和短程有序度"
试验材料 Varieties | 相对结晶度 Relative crystallinity (%) | 短程有序度 1045/1022 cm-1 | 无序结构/碳水化合物 1022/995 cm-1 |
---|---|---|---|
新麦26 Xinmai 26 | 25.78±0.16i | 1.11±0.03a | 0.77±0.03e |
济麦44 Jimai 44 | 29.26±0.15f | 1.04±0.02b | 0.82±0.01e |
西农615 Xinong 615 | 31.37±0.16d | 0.82±0.02e | 0.95±0.02d |
藁城8901 Gaocheng 8901 | 33.31±0.12b | 0.86±0.03d | 0.95±0.04d |
西农221 Xinong 221 | 27.73±0.09h | 0.95±0.01c | 0.92±0.02d |
西农979 Xinong 979 | 28.34±0.13g | 0.86±0.04d | 1.04±0.05c |
西农633 Xinong 633 | 29.92±0.09e | 0.86±0.01de | 0.97±0.02d |
西农059 Xinong 059 | 32.41±0.15c | 0.74±0.01f | 1.12±0.02b |
15(85)2A | 29.46±0.11f | 0.85±0.01de | 1.04±0.02c |
14(417)0-0-10 | 31.54±0.18d | 0.82±0.02de | 1.14±0.01b |
小偃22 Xiaoyan 22 | 31.32±0.11d | 0.84±0.03de | 1.16±0.05ab |
周麦18 Zhoumai 18 | 35.32±0.19a | 0.77±0.01f | 1.21±0.03a |
表4
12个试验材料的热特性"
试验材料 Varieties | 起始温度 T0 (℃) | 峰值温度 Tp (℃) | 结束温度 Tc (℃) | 糊化焓 ΔHgel (J·g-1) |
---|---|---|---|---|
新麦26 Xinmai 26 | 53.47±0.95de | 60.13±0.21de | 66.73±0.99bc | 6.90±0.30fg |
济麦44 Jimai 44 | 54.03±0.31bc | 60.23±0.68de | 67.45±0.46abc | 7.30±0.29ef |
西农615 Xinong 615 | 55.60±0.92ab | 61.27±0.35cd | 67.72±0.35abc | 7.40±0.30def |
藁城8901 Gaocheng 8901 | 52.63±0.25de | 60.40±0.36de | 66.95±0.35abc | 7.14±0.17ef |
西农221 Xinong 221 | 56.27±0.76a | 61.33±0.55cd | 69.02±0.68a | 6.40±0.39g |
西农979 Xinong 979 | 53.83±0.60bc | 62.96±0.06b | 64.47±1.11de | 6.94±0.11fg |
西农633 Xinong 633 | 53.73±1.29c | 64.83±0.57a | 68.62±1.17ab | 7.64±0.35cd |
西农059 Xinong 059 | 53.77±0.86c | 62.43±0.40bc | 68.73±0.62ab | 7.75±0.20bcd |
15(85)2A | 54.27±1.21bc | 59.43±1.21e | 65.72±2.49cd | 7.95±0.51abc |
14(417)0-0-10 | 51.67±0.91e | 54.33±1.00g | 60.78±0.68f | 8.31±0.40ab |
小偃22 Xiaoyan 22 | 52.50±0.36de | 56.14±0.10f | 63.10±0.82e | 8.06±0.18abc |
周麦18 Zhoumai 18 | 53.57±1.40d | 55.47±1.07fg | 65.75±0.97cd | 8.47±0.30a |
[1] | 何中虎, 杨金, 徐兆华, 刘爱峰, 赵振东. 小麦品种淀粉特性变异及其与面条品质关系的研究. 中国农业科学, 2003, 36(1):7-12. |
HE Z H, YANG J, XU Z H, LIU A F, ZHAO Z D. Variation of starch properties in wheat cultivars and their relationship with dry white Chinese noodle quality. Scientia Agricultura Sinica, 2003, 36(1):7-12. (in Chinese) | |
[2] | 毛沛, 李宗智, 卢少源. 小麦遗传资源HMW麦谷蛋白亚基组成及其与面包烘烤品质关系的研究. 中国农业科学, 1995, 28(增刊):22-27. |
MAO P, LI Z Z, LU S Y. Study on the composition of glutenin subunits in wheat genetic resources HMW and its relationship with bread baking quality. Scientia Agricultura Sinica, 1995, 28(Suppl):22-27. (in Chinese) | |
[3] | 付国占, 严美玲, 蔡瑞国, 贾秀领, 田雷, 曹鸿鸣, 王振林. 磷氮配施对小麦籽粒蛋白质组分含量和面团特性的影响. 中国农业科学, 2008, 41(6):1640-1648. |
FU G Z, YAN M L, CAI R G, JIA X L, TIAN L, CAO H M, WANG Z L. Effects of application of phosphorus combined with nitrogen fertilizer on contents of grain protein components and dough rheological characteristics in wheat. Scientia Agricultura Sinica, 2008, 41(6):1640-1648. (in Chinese) | |
[4] | 郭兴凤, 张莹莹, 任聪, 石长硕, 孙小红. 小麦蛋白质的组成与面筋网络结构, 面制品品质关系的研究进展. 河南工业大学学报(自然科学版), 2018, 39(186):125-130. |
GUO X F, ZHANG Y Y, REN C, SHI C S, SUN X H. Research progress on the relationship between the composition of wheat protein and the network structure of gluten and the quality of flour products. Journal of Henan University of Technology (Natural Science Edition), 2018, 39(186):125-130. (in Chinese) | |
[5] |
KAUR A, SHEVKANI K, KATYAL M, SINGH N, AHLAWAT A K, SINGH A M. Physicochemical and rheological properties of starch and flour from different durum wheat varieties and their relationships with noodle quality. Journal of Food Science and Technol, 2016, 53:2127-2138.
doi: 10.1007/s13197-016-2202-3 |
[6] |
SOH H N, SISSONS M J, TUME R, M A. Effect of starch granule size distribution and elevated amylose content on durum dough rheology and spaghetti cooking quality. Cereal Chemistry, 2007, 83(5):513-519.
doi: 10.1094/CC-83-0513 |
[7] |
PARK S H, CHUNG O K, SEIB P A. Effects of varying weight ratios of large and small wheat starch granules on experimental straight-dough bread. Cereal Chemistry, 2005, 82:166-172.
doi: 10.1094/CC-82-0166 |
[8] |
WILSON J D, BECHTEL D B, GWT W, SEIB P A. Bread quality of spelt wheat and its starch. Cereal Chemistry, 2008, 85:629-638.
doi: 10.1094/CCHEM-85-5-0629 |
[9] | ADRIAAN V, AUGER F, FREDERIX S, MOREL M H. Image analysis of dough development: Impact of mixing parameters and wheat cultivar on the gluten phase distribution. Journal of Food Engineering, 2015, 55411:152-160. |
[10] |
LETANG C, PIAU M, VERDIER C. Characterization of wheat flour-water doughs. Part I: Rheometry and microstructure. Journal of Food Engineering, 1999, 41:121-132.
doi: 10.1016/S0260-8774(99)00082-5 |
[11] | WANG P, JIN Z, XU X. Physicochemical alterations of wheat gluten proteins upon dough formation and frozen storage-A review from gluten, glutenin and gliadin perspectives. Trends in Food Science & Technology, 2015, 46:189-198. |
[12] |
LI S, LIU Y, TONG J, YU L, GAO X. The overexpression of high-molecular-weight glutenin subunit Bx7 improves the dough rheological properties by altering secondary and micro-structures of wheat gluten. Food Research International, 2019, 130:108914.
doi: 10.1016/j.foodres.2019.108914 |
[13] |
LIAO L, ZHANG F L, LIN W J, LI Z F, YANG J Y, PARK K H, NI L, LIU P. Gluten-starch interactions in wheat gluten during carboxylic acid deamidation upon hydrothermal treatment. Food Chemistry, 2019, 283:111-122.
doi: 10.1016/j.foodchem.2019.01.019 |
[14] |
LI X, LIU T, SONG L, ZHANG H, LI L, GAO X. Influence of high-molecular-weight glutenin subunit composition at Glu-A1 and Glu-D1 loci on secondary and micro structures of gluten in wheat (Triticum aestivum L.). Food Chemistry, 2016b, 213:728-734.
doi: 10.1016/j.foodchem.2016.07.043 |
[15] | 程西永, 吴少辉, 李海霞, 董中东, 任妍, 詹克慧, 许海霞. 小麦高, 低分子量麦谷蛋白亚基对品质性状的影响. 麦类作物学报, 2014, 34:482-488. |
CHENG X Y, WU S H, LI H X, DONG Z D, REN Y, ZHAN K H, XU H X. Effects of HMW and LMW glutenin subunits on wheat quality traits. Journal of Triticeae Crops, 2014, 34:482-488. (in Chinese) | |
[16] |
CAO X, TONG J, DING M, WANG K, WANG L, CHENG D, LI H, LIU A, LIU J, ZHAO Z. Physicochemical properties of starch in relation to rheological properties of wheat dough (Triticum aestivum L.). Food Chemistry, 2019, 297:125000.
doi: 10.1016/j.foodchem.2019.125000 |
[17] |
GAO X, LIU T, YU J, LI L, FENG Y, LI X. Influence of high-molecular-weight glutenin subunit composition at Glu-B1 locus on secondary and micro structures of gluten in wheat (Triticum aestivum L.). Food Chemistry, 2016, 197:1184-1190.
doi: 10.1016/j.foodchem.2015.11.085 |
[18] | 金慧, 何中虎, 李根英, 穆培源, 樊哲儒, 夏先春, 张艳. 利用Aroona近等基因系研究高分子量麦谷蛋白亚基对面包加工品质的影响. 中国农业科学, 2013, 46(6):1095-1103. |
JIN H, HE Z H, LI G Y, MU P Y, FAN Z R, XIA X C, ZHANG Y. Effects of high molecular weight glutenin subunits on wheat quality by Aroona and its near-isogenic lines. Scientia Agricultura Sinica, 2013, 46(6):1095-1103. (in Chinese) | |
[19] |
SINGH S, SINGH N. Relationship of polymeric proteins and empirical dough rheology with dynamic rheology of dough and gluten from different wheat varieties. Food Hydrocolloids, 2013, 33:342-348.
doi: 10.1016/j.foodhyd.2013.04.007 |
[20] |
YEGIN S, ALTINEL B, TULUK K. A novel extremophilic xylanase produced on wheat bran from Aureobasidium pullulans NRRL Y-2311-1: Effects on dough rheology and bread quality. Food Hydrocolloids, 2018, 81:389-397.
doi: 10.1016/j.foodhyd.2018.03.012 |
[21] |
YU L W, GUO L, LIU Y C. Novel parameters characterizing size distribution of A and B starch granules in the gluten network: Effects on dough stability in bread wheat. Carbohydrate Polymers, 2021, 257:117623.
doi: 10.1016/j.carbpol.2021.117623 |
[22] |
ZI Y, SHEN H, DAI S, MA X, JU W, WANG C, GUO J, LIU A, CHENG D, LI H. Comparison of starch physicochemical properties of wheat cultivars differing in bread- and noodle-making quality. Food Hydrocolloids, 2019, 93:78-86.
doi: 10.1016/j.foodhyd.2019.02.014 |
[23] |
EDWARDS N M, DEXTER J E, SCANLON M G. Starch participation in durum dough linear viscoelastic properties. Cereal Chemistry, 2002, 79:850-856.
doi: 10.1094/CCHEM.2002.79.6.850 |
[24] |
SHEVKANI K, SINGH N, BAJAJ R KAUR, A. Wheat starch production, structure, functionality and applications-A review. International Journal of Food Science and Technology, 2017, 52:38-58.
doi: 10.1111/ijfs.2017.52.issue-1 |
[25] |
TANG H, ANDO H, WATANABE K, TAKEDA Y, MITSUNAGA T. Physicochemical properties and structure of large, medium and small granule starches in fractions of normal barley endosperm. Carbohydrate Research, 2001, 330:241-248.
doi: 10.1016/S0008-6215(00)00292-5 |
[26] |
LLOYD J R. The A to B of starch granule formation in wheat endosperm. Journal of Experimental Botany, 2020, 71:1-3.
doi: 10.1093/jxb/erz414 |
[27] | LIU X, CAI R, LI Y, ZHANG M, YANG M, ZHANG Y. Starch component characteristics and physicochemical properties in wheat grains with different amylose contents in relation to low light after anthesis. Starch-Starke, 2017, 1:1700050. |
[28] | 戴忠民, 王振林, 张敏, 李文阳, 闫素辉, 蔡瑞国, 尹燕枰. 不同品质类型小麦籽粒淀粉粒度的分布特征. 作物学报, 2008, 34(3):465-470. |
DAI Z M, WANG Z L, ZHANG M, LI W Y, YAN S H, CAI R G, YIN Y P. Starch granule size distribution in grains of strong and weak gluten wheat cultivars. Acta Agronomica Sinica, 2008, 34(3):465-470. (in Chinese) | |
[29] |
ZHANG Y, ZHANG G Z. Starch content and physicochemical properties of green wheat starch. International Journal of Food Properties, 2019, 22(1):1463-1474.
doi: 10.1080/10942912.2019.1651739 |
[30] |
LI W, GAO J, WU G, ZHENG J, OUYANG S, LUO Q, ZHANG G. Physicochemical and structural properties of A- and B-starch isolated from normal and waxy wheat: Effects of lipids removal. Food Hydrocolloids, 2016, 60:364-373.
doi: 10.1016/j.foodhyd.2016.04.011 |
[31] | CHIOTELLI E, MESTE M L. Effect of small and large wheat starch granules on thermomechanical behavior of starch. Cereal Chemistry, 2007, 79(2):268-293. |
[32] | 张惠琴, 臧清露, 李超, 刘佳闻, 张洁, 李继洋, 李玲玉, 盛建国, 孔德昭, 李雅琪. 小麦粉主要成分对面条品质的影响研究. 现代面粉工业, 2021, 35(1):16-19. |
ZHANG H Q, ZANG Q L, LI C, LIU J W, ZHANG J, LI J Y, LI L Y, SHENG J G, KONG D Z, LI Y Q. Study on the effect of main components of wheat flour on noodle quality. Modern Flour Milling Industry, 2021, 35(1):16-19. (in Chinese) | |
[33] |
TAO H, WANG P, WU F F. Particle size distribution of wheat starch granules in relation to baking properties of frozen dough. Carbohydrate Polymers, 2016, 137:147-153.
doi: 10.1016/j.carbpol.2015.10.063 |
[34] | 宋健民, 刘爱峰, 李豪圣, 戴双, 刘建军, 赵振东, 刘广田. 小麦籽粒淀粉理化特性与面条品质关系研究. 中国农业科学, 2008, 41(1):272-279. |
SONG J M, LI A F, LI H S, DAI S, LIU J J, ZHAO Z D, LIU G T. Relationship between starch physiochemical properties of wheat grain and noodle quality. Scientia Agricultura Sinica, 2008, 41(1):272-279. (in Chinese) | |
[35] |
ERIC B. Understanding starch structure: Recent progress. Agronomy, 2017, 7:56-65.
doi: 10.3390/agronomy7030056 |
[36] |
MCCANN T H, HOMER S H, ISETH S K, LI D, LUNDIN L. High amylose wheat starch increases the resistance to deformation of wheat flour dough. Journal of Cereal Science, 2017, 79:440-448.
doi: 10.1016/j.jcs.2017.12.001 |
[37] |
PARK C S, BAIK B K. Significance of amylose content of wheat starch on processing and textural properties of instant noodles. Cereal Chemistry, 2004, 81:521-526.
doi: 10.1094/CCHEM.2004.81.4.521 |
[38] |
SASAKI T. Effect of wheat starch characteristics on the gelatinization, retrogradation, and gelation properties. Japan Agricultural Research Quarterly, 2005, 39(4):253-260.
doi: 10.6090/jarq.39.253 |
[39] |
GAO X, LIU T, DING M, WANG J, LI C, WANG Z, LI X. Effects of HMW-GS Ax1 or Dx2 absence on the glutenin polymerization and gluten micro structure of wheat (Triticum aestivum L.). Food Chemistry, 2017, 240:626-633.
doi: 10.1016/j.foodchem.2017.07.165 |
[40] |
SONG L, ZHAO L, LIU Z, LI L, LI X. Effects of exogenous starch on the structural-thermal properties of gluten in wheat with HMW-GS variations at Glu-D1 locus. Food Research International, 2019, 130:108950.
doi: 10.1016/j.foodres.2019.108950 |
[41] |
ZHU D, ZHANG H, GUO B, XU K, DAI Q, WEI C, ZHOU G, HUO Z. Physicochemical properties of indica-japonica hybrid rice starch from Chinese varieties. Food Hydrocolloids, 2017, 63:356-363.
doi: 10.1016/j.foodhyd.2016.09.013 |
[42] |
SEVENOU O, HILL S E, FARHAT I A, MITCHELL J R. Organisation of the external region of the starch granule as determined by infrared spectroscopy. International Journal of Biological Macromolecules, 2002, 31:79-85.
doi: 10.1016/S0141-8130(02)00067-3 |
[43] | WANG S, LI C, COPELAND L, NIU Q, WANG S. Starch retrogradation: A comprehensive review. Food Science and Food Safety, 2015, 14:1541-4337. |
[44] |
TESTER R F, KARKALAS J, XIN Q. Starch-composition, fine structure and architecture. Journal of Cereal Science, 2004, 39:151-165.
doi: 10.1016/j.jcs.2003.12.001 |
[45] |
WATERSCHOOT J, GOMAND S V, FIERENS E, DELCOUR J A. Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch-Starke, 2015, 67:14-29.
doi: 10.1002/star.v67.1-2 |
[46] |
ZHANG D, MU T, SUN H. Effects of starch from five different botanical sources on the rheological and structural properties of starch-gluten model doughs. Food Research International, 2018, 103:156-162.
doi: 10.1016/j.foodres.2017.10.023 |
[47] |
YURYEV V P, KRIVANDIN A V, KISELEVA V I, WASSERMAN L A, GENKINA N K, FORNAL J, BLASZCZAK W, SCHIRALDI A. Structural parameters of amylopectin clusters and semi-crystalline growth rings in wheat starches with different amylose content. Carbohydrate Research, 2004, 339:2683-2691.
doi: 10.1016/j.carres.2004.09.005 |
[48] | SINGH S, SINGH N, ISONO N, NODA T. Relationship of granule size distribution and amylopectin structure with pasting, thermal, and retrogradation properties in wheat starch. Journal of Agricultural & Food Chemistry, 2010, 58:1180-1188. |
[49] |
FLIPSE E, KEETELS C, JACOBSEN E, VISSER R. The dosage effect of the wildtype GBSS allele is linear for GBSS activity but not for amylose content: absence of amylose has a distinct influence on the physico-chemical properties of starch. Theoretical and Applied Genetics, 1996, 92:121-127.
doi: 10.1007/BF00222961 |
[1] | 宋霄君,张敏,武雪萍,赵城,石剑,张玉春,刘希伟,蔡瑞国. 干旱胁迫对小麦不同品种胚乳淀粉结构和理化特性的影响[J]. 中国农业科学, 2017, 50(2): 260-271. |
[2] | 汤晓智, 扈战强, 周剑敏, 方勇, 沈新春, 胡秋辉. 糙米粉对小麦面团流变学及饼干品质特性的影响[J]. 中国农业科学, 2014, 47(8): 1567-1576. |
[3] | 宋健民,刘爱峰,李豪圣,戴 双,刘建军,赵振东,刘广田. 小麦籽粒淀粉理化特性与面条品质关系研究[J]. 中国农业科学, 2008, 41(1): 272-279 . |
[4] | 宋健民,戴 双,李豪圣,刘爱峰,刘建军,赵振东,刘广田. Wx蛋白缺失对淀粉理化特性和面条品质的影响[J]. 中国农业科学, 2007, 40(12): 2888-2894 . |
[5] | 田纪春,胡瑞波,陈建省,张永祥,王延训. 小麦粉面团稳定时间的变化及其稳定性分析[J]. 中国农业科学, 2005, 38(11): 2165-2172 . |
|