[1] 国际农业生物技术应用服务组织. 2016年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2017, 37(4): 1-8.
International Service for the Acquisition of Agri-biotech Applications. The global commercialization of biotech crops/transgenic crop in 2016. China Biotechnology, 2017, 37(4): 1-8. (in chinese)
[2] International Service for the Acquisition of Agri-biotech Applications. http://www.isaaa.org/gmapprovaldatabase/advsearch/default.asp?CropID=2&TraitTypeID=1&DeveloperID=Any&CountryID=Any&ApprovalTypeID=Any[EB/OL]. [2017-09-26].
[3] Warwick S I, Stewart C N. Crops come from wild plants: how domestication, transgenes, and linkage together shape ferality. Crop ferality and volunteerism, 2005, 36(1): 9-30.
[4] Légère A. Risks and consequences of gene flow from herbicide- resistant crops: canola (Brassica napus L.) as a case study. Pest Management Science, 2005, 61: 292-300.
[5] Pandolfo C E, Presotto A, Carbonell F T, Ureta S, Poverene M, Cantamutto M. Transgenic glyphosate-resistant oilseed rape (Brassica napus) as an invasive weed in Argentina: detection, characterization, and control alternatives. Environment Science and Pollution Research, 2016, 23: 24081-24091.
[6] Yoshimura Y, Beckie H J, Matsuo K. Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada. Environment Biosafety Research, 2006, 5(2): 67-75.
[7] Knispel A L, McLachlan S M, Van Acker R C, Friesen L F. Gene flow and multiple herbicide resistance in escaped canola populations. Weed Science, 2008, 56: 72-80.
[8] Schafer M G, Ross A, Londo J P, Burdick C, Lee E H, Travers S E, Van de Water P K, Sagers C L. The establishment of genetically engineered canola populations in the U.S. PLoS One, 2011, 6(10): e25736.
[9] Jørgensen R B, Andersen B. Spontaneous hybridization between oilseed rape (Brassica napus) and weedy B. campestris (Brassicaceae): a risk of growing genetically modified oilseed rape. American Journal of Botany, 1994, 81(12): 1620-1626.
[10] Snow A A, Andersen B, Jørgensen R B. Costs of transgenic herbicide resistance introgressed from Brassica napus into weedy B. rapa. Molecular Ecology, 1999, 8(4): 605-615.
[11] Bing D J, Downey R K, Rakow G F W. Hybridizations among Brassica napus, B. rapa and B. juncea and their two weedy relatives B. nigra and Sinapis arvensis under open pollination conditions in the field. Plant Breeding, 1996, 115: 470-473.
[12] Liu Y B, Wei W, Ma K P, Darmency H. Backcrosses to Brassica napus of hybrids between B. juncea and B. napus as a source of herbicide-resistant volunteer-like feral populations. Plant Science, 2010, 179(5): 459-465.
[13] Eber F, Chèvre A M, Baranger A, Vall6e P, Tanguy X, Renard M. Spontaneous hybridization between a male-sterile oilseed rape and two weeds. Theoretical and Applied Genetics, 1994, 88: 362-368.
[14] Darmency H, Lefol E, Fleury A. Spontaneous hybridizations between oilseed rape and wild radish. Molecular Ecology, 1998, 7(11): 1467-1473.
[15] Gueritaine G, Sester M, Eber F, Chèvre A M, Darmency H. Fitness of backcross six of hybrids between transgenic oilseed rape (Brassica napus) and wild radish (Raphanus raphanistrum). Molecular Ecology, 2002, 11(8): 1419-1426.
[16] Hall L, Topinka K, Huffman J, Davis L, Good A. Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Science, 2000, 48: 688-694.
[17] Aono M, Wakiyama S, Nagatsu M, Kaneko Y, Nishizawa T, Nakajima N, Tamaoki M, Kubo A, Saji H. Seeds of a possible natural hybrid between herbicide-resistant Brassica napus and Brassica rapa detected on a riverbank in Japan. Genetically Modified Crops, 2011, 2(3): 201-210.
[18] Jenczewski E, Ronfort J, Chèvre A M. Crop-to-wild gene flow, introgression and possible fitness effects of transgenes. Environmental Biosafety Researeh, 2003, 2: 9-24.
[19] Mikkelsen T R, Andersen B, Jorgensen R B. The risk of crop transgene spread. Nature, 1996, 380: 31.
[20] Hauser T P, Shaw R G, Østergård H. Fitness of F1 hybrids between weedy Brassica rapa and oilseed rape (B. napus). Heredity, 1998, 81(4): 429-435.
[21] Hauser T P, Jørgensen R B, Østergård H. Fitness of backcross and F2 hybrids between weedy Brassica rapa and oilseed rape (B. napus). Heredity, 1998, 81(4): 436-443.
[22] Hauser T P, Damgaard C, Jørgensen R B. Frequency- dependent fitness of hybrids between oilseed rape (Brassica napus) and weedy B. rapa (Brassicaceae). American Journal of Botany, 2003, 90(4): 571-578.
[23] Vacher C, Weis A E, Hermann D, Kossler T, Young C, Hochberg M E. Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape (Brassica rapa). Theoretical and Applied Genetics, 2004, 109: 806-814.
[24] Chèvre A M, Eber F, Baranger A,Renard M. Gene flow from transgenic crops. Nature, 1997, 389(6654): 924.
[25] Chèvre A M, Eber F, Baranger A, Hureau G, Barret P, Picault H, Renard M. Characterization of backcross generations obtained under field conditions from oilseed rape-wild radish F1 interspecific hybrids: an assessment of transgene dispersal. Theoretical and Applied Genetics, 1998, 97(1/2): 90-98.
[26] Mercer K L, Andow D A, Wyse D L,Wyse D L, Shaw R G. Stress and domestication traits increase the relative fitness of crop-wild hybrids in sunflower. Ecology Letters, 2007, 10: 383-393.
[27] Huangfu C, Qiang S, Song X. Performance of hybrids between transgenic oilseed rape (Brassica napus) and wild Brassica juncea: An evaluation of potential for transgene escape. Crop Protection, 2011, 30(1): 57-62.
[28] Campbell D R, Waster N M. Genotype-by-environment interaetion and the fitness of plant hybrids in the wild. Evolution, 2001, 55(4): 669-676.
[29] Simard M J, Légère A, Séguin-Swartz G, Nair H, Warwick S. Fitness of double vs. single herbicide-resistant canola. Weed Science, 2005, 53: 489-498.
[30] Campbell L G, Snow A A, Ridley C E. Weed evolution after crop gene introgression: greater survival and feeundity of hybrids in a new environment. Ecology Letters, 2006, 9: 1198-1209.
[31] Londo J P, Bautista N S, Sagers C L, Lee E H, Watrud L S. Glyphosate drift promotes changes in fitness and transgene gene flow in canola (Brassica napus) and hybrids. Annals of Botany, 2010, 106(6): 957-965.
[32] Huangfu C H, Song X L, Qiang S. ISSR variation within and among wild Brassica juncea populations: implication for herbicide resistance evolution. Genetic Resources and Crop Evolution, 2009, 56(7): 913-924.
[33] 浦惠明, 戚存扣, 张洁夫, 傅寿仲, 高建芹, 陈新军, 陈松, 赵祥祥. 转基因抗除草剂油菜对近缘作物的基因漂移. 生态学报, 2005, 25(3): 581-588.
Pu H M, Qi C K, Zhang J F, Fu S Z, Gao J Q, Chen X J, Zhao XX. Studies on the gene flow from herbicide-tolerant GM rapeseed to its close relative crops. Acta Ecologica Sinica, 2005, 25(3): 581-588. (in chinese)
[34] 宋小玲, 皇甫超河, 强胜. 抗草丁膦和抗草甘膦转基因油菜的抗性基因向野芥菜的流动. 植物生态学报, 2007, 31(4): 729-737.
Song X L, Huangfu C H, Qiang S. Gene flow from glufosinate or glyphosate-torelant oilseed rape to wild rape. Journal of Plant Ecology, 2007, 31(4): 729-737. (in chinese)
[35] Song X L, Wang Z, Zuo J, Huangfu C H, Qiang S. Potential gene flow of two herbicide-tolerant transgenes from oilseed rape to wild B. juncea var. gracilis. Theoretical and applied genetics, 2010, 120(8): 1501-1510.
[36] 郑爱琴, 强胜, 宋小玲. 抗除草剂转基因油菜与野芥菜的杂交1代与5种常规栽培油菜回交后代的适合度. 应用与环境生物学报, 2014, 20(3): 337-344.
Zheng A Q, Qiang S, Song X L. Fitness of backcross between F1 (wild B. juncea × herbicide-resistant transgenic oilseed rape) and 5 conventional cultivate varieties. Chinese Journal of Applied and Environmental Biology,2014, 20(3): 337-344. (in chinese)
[37] Liu Y B, Darmency H, Jr Stewart C N, Wei W, Tang Z X, Ma K P. The effect of Bt-transgene introgression on plant growth and reproduction in wild Brassica juncea. Transgenic Research, 2015, 24(3): 537-547.
[38] 张庆玲, 王建, 强胜, 王晓蕾, 闫静, 伏建国, 宋小玲. 抗草甘膦转基因油菜与野芥菜回交3代子1代和子2代的适合度研究. 南京农业大学学报, 2017, 40(3): 434-443.
Zhang Q L, Wang J, Qiang S, WANG X L, Yan J, Fu J G, Song X L. Fitness of BC3F2 and BC3F3 between glyphosate-resistant transgenic oilseed rape and wild Brassica juncea. Journal of Nanjing Agricultural University, 2017, 40(3): 434-443. (in chinese)
[39] Rieger M A, Lamond M, Preston C, Powles S B, Roush R T. Pollen-mediated movement of herbicide resistance between commercial canola fields. Science, 2002, 296(5577): 2386-2388.
[40] Haygood R, Ives A R, Andow D A. Consequences of recurrent gene flow from crops to wild relatives. Proceedings of the Royal Society of London B: Biological Sciences, 2003, 270: 1879-1886.
[41] Moon H S, Halfhill M D, Good L L, Raymer P L, Jr Stewart C N. Characterization of directly transformed weedy Brassica rapa and introgressed B. rapa with Bt cry1Ac and gfp genes. Plant Cell Reports, 2007, 26: 1001-1010.
[42] Wang W, Xia H, Yang X, Xu T, Si HJ, Cai XX, Wang F, Su J, Snow A A, Lu B R. A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide. New Phytologist, 2014, 202: 679-688.
[43] Wilkinson M, Tepfer M. Fitness and beyond: preparing for the arrival of GM crops with ecologically important novel characters. Environmental Biosafety Research, 2009, 8: 1-14.
[44] Landbo L, Jørgensen R B. Seed germination in weedy Brassica campestris and its hybrids with B. napus: Implications for risk assessment of transgenic oilseed rape. Euphytica, 1997, 97(2): 209-216.
[45] Roach D A, Wulff R D. Maternal effects in plants. Annual Review of Ecology and Systematics, 1987, 18: 209-235.
[46] Chèvre A M, AdameZyk K, Eber F, Huteau V, Coriton O, Letanneur J C, Laredo C, Jenczewski E, Monod H. Modelling gene flow between oilseed rape and wild radish. Ⅰ. Evolution of ehromosome strueture. Theoretieal and Applied Geneties, 2007, 114: 209-221.
[47] Halfhill M D, Sutherland J P, Moon H S, Poppy G M, Warwick S, Weissinger A, Rufty T, Raymer P L, Jr Stewart C N. Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes. Molecular Ecology, 2005, 14(10): 3177-3189.
[48] 马霓, 张春雷, 李俊, 李光明. 种植密度对直播油菜结实期源库关系及产量的调节. 中国油料作物学报, 2009, 31(2): 180-184.
Ma N, Zhang C L, Li J, Li G M. Regulation of planting density on source-sink relationship and yield at seed-set stage of rapeseed (Brassica napus L.). Chinese journal of oil crop sciences, 2009, 31(2): 180 -184. (in Chinese)
[49] 邵留东. 不同播期条件下种植密度对油菜生长发育及产量的影响[D]. 武汉: 华中农业大学, 2009.
Shao L D. Effects of planting density on the development and yield of rapeseed (Brassica napus L.) under different sowing dates[D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese)
[50] Johannessen M M, Damgaard C, Andersen B A, Jørgensen R B. Competition affects the production of first backcross offspring on F1-hybrids, Brassica napus × B. rapa. Euphytica, 2006, 150: 17-25.
[51] Devos Y, Hails R S, Messéan A, Perry J N, Squire G R. Feral genetically modified herbicide tolerant oilseed rape from seed import spills: are concerns scientifically justified? Transgenic Research, 2012, 21(1): 1-21. |