中国农业科学 ›› 2019, Vol. 52 ›› Issue (13): 2280-2294.doi: 10.3864/j.issn.0578-1752.2019.13.008
代红翠1,3,张慧2,3,薛艳芳2,3,高英波2,3,钱欣2,3,赵海军3,成浩4,李宗新2,3(),刘开昌1,3(
)
收稿日期:
2018-12-24
接受日期:
2019-02-26
出版日期:
2019-07-01
发布日期:
2019-07-11
通讯作者:
李宗新,刘开昌
作者简介:
代红翠,E-mail:daihongcui2013@163.com
基金资助:
DAI HongCui1,3,ZHANG Hui2,3,XUE YanFang2,3,GAO YingBo2,3,QIAN Xin2,3,ZHAO HaiJun3,CHENG Hao4,LI ZongXin2,3(),LIU KaiChang1,3(
)
Received:
2018-12-24
Accepted:
2019-02-26
Online:
2019-07-01
Published:
2019-07-11
Contact:
ZongXin LI,KaiChang LIU
摘要:
【目的】研究华北平原地区小麦-玉米周年复种模式下不同耕作和秸秆还田方式对土壤真菌群落结构及功能的影响,并探索农田土壤肥力对耕作和秸秆还田方式响应差异的生物学机制,为优化耕作与秸秆还田方式和提高农田土壤肥力提供理论依据。【方法】本研究以华北平原小麦-玉米周年复种农田土壤为研究对象,采用Miseq高通量测序技术,结合FUNGuild真菌功能预测工具,分析3种耕作方式(免耕、深耕与旋耕)与两种秸秆还田方式(麦秸单季还田与小麦-玉米秸秆双季还田)定位试验条件下,小麦成熟期土壤真菌群落结构与功能的差异,结合土壤理化性质,进一步探究农田土壤真菌群落结构及功能变化的环境驱动因子。【结果】与免耕双季还田相比,深耕秸秆双季还田与深耕单季还田0—10 cm耕层土壤有机碳含量分别降低35.04%和44.30%;免耕秸秆单季还田10—20 cm耕层土壤中碱解氮含量显著低于其他处理。农田土壤0—10 cm土层真菌主要包含子囊菌门(Ascomycota)、担子菌门(Basidiomycota)和壶菌门(Chytridiomycota),相对丰度分别为68.98%、16.96%和1.62%;10—20 cm土层真菌主要包含子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、壶菌门(Chytridiomycota)和球囊菌门(Glomeromycota),相对丰度分别为68.44%、15.52%、1.51%和1.23%。不同处理土壤真菌群落结构存在差异,与秸秆单季还田相比,秸秆双季还田0—10 cm和10—20 cm土层担子菌门(Basidiomycota)相对丰度分别提高了50.07%和29.08%。进一步分析土壤群落结构发生变化的原因,结果显示0—10 cm土层土壤真菌群落多元回归树第一次分割以土壤有机碳为节点,其阈值为11.17 g·kg -1,旋耕双季还田和免耕双季还田与其他处理分离;10—20 cm土层土壤真菌群落多元回归树第一次分割以碱解氮为节点,其阈值为6.52 mg·kg -1,免耕单季还田与其他处理分离。从营养类型看,各处理0—10 cm(26.84%)和10—20 cm(23.91%)土层土壤真菌均以病理营养型为主;与免耕相比,深耕和旋耕处理0—10 cm土层病理营养型真菌相对丰度分别显著降低25.16%和16.45%,且以深耕单季还田最低。病理营养型真菌相对丰度与土壤有机碳、可溶性有机碳、全氮、碱解氮和速效钾含量均呈显著正相关关系。【结论】不同耕作与秸秆还田方式改变了农田土壤真菌群落结构及功能,土壤有机碳和碱解氮的改变是影响真菌群落组成的主要因素;深耕能够降低秸秆还田后土壤病理营养型真菌相对丰度,利于保持农田土壤生态系统健康。
代红翠,张慧,薛艳芳,高英波,钱欣,赵海军,成浩,李宗新,刘开昌. 不同耕作和秸秆还田下褐土真菌群落变化特征[J]. 中国农业科学, 2019, 52(13): 2280-2294.
DAI HongCui,ZHANG Hui,XUE YanFang,GAO YingBo,QIAN Xin,ZHAO HaiJun,CHENG Hao,LI ZongXin,LIU KaiChang. Response of Fungal Community and Function to Different Tillage and Straw Returning Methods[J]. Scientia Agricultura Sinica, 2019, 52(13): 2280-2294.
表1
不同耕作与秸秆还田方式处理"
处理 Treatment | 小麦季 Wheat season | 玉米季 Maize season |
---|---|---|
NTD | 免耕+秸秆还田 Straw returning with no tillage | 免耕直播+秸秆还田 Straw returning without tillage |
NTS | 免耕+秸秆还田 Straw returning with no tillage | 免耕直播 No tillage |
DTD | 深松+秸秆还田 Straw returning with deep tillage | 免耕直播+秸秆还田 Straw returning without tillage |
DTS | 深松+秸秆还田 Straw returning with deep tillage | 免耕直播 No tillage |
RTD | 旋耕+秸秆还田 Straw returning with rotary tillage | 免耕直播+秸秆还田 Straw returning without tillage |
RTS | 旋耕+秸秆还田 Straw returning with rotary tillage | 免耕直播 No tillage |
表2
不同耕作和秸秆还田方式下土壤化学性质"
土层 Layer (cm) | 处理 Treatment | pH | 有机碳 TOC (g·kg-1) | 可溶性有机碳 DOC (mg·kg-1) | 全氮 TN (g·kg-1) | 碱解氮 AN (mg·kg-1) | 有效磷 AP (mg·kg-1) | 速效钾 AK (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
0-10 | NTD | 7.04±0.10c | 14.04±2.01a | 49.09±5.78a | 1.11±0.02a | 11.11±1.99a | 62.18±8.76a | 180.39±16.56a |
NTS | 7.38±0.14b | 10.58±0.64bc | 38.48±4.46b | 0.97±0.10b | 7.50±0.28b | 39.76±5.81b | 143.71±11.94b | |
DTD | 7.54±0.06ab | 9.12±1.35cd | 37.36±5.61b | 1.03±0.08ab | 9.49±0.70ab | 42.52±6.46b | 111.43±8.21c | |
DTS | 7.61±0.09a | 7.82±0.15d | 25.48±2.71c | 0.98±0.04b | 9.03±0.88ab | 31.09±4.37b | 92.67±5.47c | |
RTD | 7.45±0.12ab | 12.15±1.29ab | 41.08±3.65b | 0.96±0.06b | 9.84±0.77a | 44.18±8.64b | 147.77±10.25b | |
RTS | 7.47±0.14ab | 10.08±1.45bc | 39.68±2.61b | 0.92±0.05b | 9.95±1.65a | 41.36±7.31b | 112.44±15.52c | |
耕作方式Tillage | ns | ** | ** | ns | ns | * | *** | |
还田方式Returning | ns | *** | ** | * | * | ** | *** | |
交互作用Interaction | ns | ns | ns | ns | * | ns | ns | |
10-20 | NTD | 7.80±0.21a | 6.70±0.80c | 35.95±5.30ab | 0.78±0.18ab | 7.30±0.58a | 19.86±2.59b | 94.87±5.29a |
NTS | 7.87±0.16a | 6.05±0.98c | 28.51±2.94bc | 0.61±0.08b | 5.31±0.97b | 16.91±3.49b | 91.99±7.39a | |
DTD | 7.57±0.06a | 8.15±0.80ab | 29.57±5.01abc | 0.92±0.11a | 8.62±0.15a | 27.39±4.55a | 106.02±11a | |
DTS | 7.75±0.20a | 7.33±0.17bc | 25.21±1.98c | 0.76±0.03ab | 8.70±1.01a | 23.37±1.77ab | 98.75±9.89a | |
RTD | 7.53±0.23a | 9.26±0.89a | 37.44±4.88a | 0.71±0.05b | 7.90±1.30a | 29.14±5.3a | 102.81±2.97a | |
RTS | 7.72±0.15a | 8.20±0.38ab | 35.43±4.61ab | 0.72±0.06b | 8.00±0.66a | 26.81±3.59a | 98.92±4.15a | |
耕作方式Tillage | ns | *** | * | ns | ** | ** | ns | |
还田方式Returning | ns | * | * | * | ns | ns | ns | |
交互作用Interaction | ns | ns | ns | ns | ns | ns | ns |
表3
不同耕作和秸秆还田方式下土壤真菌高通量测序及群落α多样性指数"
土层 Layer (cm) | 处理 Treatment | 序列数 Reads | 操作分类单元 OTU | 覆盖度 Coverage (%) | 香农指数 Shannon index | ACE 指数 ACE index | Chao 1指数 Chao 1 index | ||
---|---|---|---|---|---|---|---|---|---|
0-10 | NTD | 22368 | 160.67±4.73bc | 99.86 | 2.93±0.09b | 187.14±12.24a | 190.50±17.14a | ||
NTS | 22368 | 152.00±3.00c | 99.88 | 2.96±0.05b | 171.75±6.00a | 170.46±4.52a | |||
DTD | 22368 | 154.00±11.27bc | 99.82 | 2.84±0.06b | 194.55±45.81a | 197.44±51.97a | |||
DTS | 22368 | 175.00±1.00a | 99.88 | 2.95±0.11b | 203.64±4.26a | 202.76±12.03a | |||
RTD | 22368 | 167.00±16.52abc | 99.87 | 2.87±0.03b | 207.69±26.83a | 212.52±23.99a | |||
RTS | 22368 | 177.33±3.06a | 99.85 | 3.10±0.08a | 194.63±7.08a | 194.01±12.00a | |||
耕作方式 Tillage | - | * | - | ns | ns | ns | |||
还田方式 Returning | - | ns | - | ** | ns | ns | |||
交互作用Interaction | - | * | - | ns | ns | ns | |||
10-20 | NTD | 22368 | 167.00±4.36a | 99.91 | 3.24±0.09a | 184.75±6.58a | 190.12±13.69a | ||
NTS | 22368 | 131.33±8.14b | 99.89 | 2.49±0.34b | 153.34±2.32b | 158.04±4.56b | |||
DTD | 22368 | 143.67±10.07b | 99.86 | 2.52±0.24b | 158.66±11.23b | 158.53±11.96b | |||
DTS | 22368 | 178.67±2.08a | 99.86 | 3.13±0.06a | 193.56±5.18a | 197.41±2.47a | |||
RTD | 22368 | 163.33±7.64a | 99.89 | 2.97±0.06a | 194.48±14.13a | 192.32±11.16a | |||
RTS | 22368 | 172.33±13.05a | 99.89 | 3.18±0.03a | 200.79±16.43a | 199.87±12.53a | |||
耕作方式 Tillage | - | ** | - | ns | ** | ** | |||
还田方式 Returning | - | ns | - | ns | ns | ns | |||
交互作用Interaction | - | *** | - | *** | ** | *** |
表4
不同耕作与施肥制度土壤真菌功能营养型丰度与土壤理化性质的关系"
功能营养型 Functional groups | pH | 有机碳 TOC | 可溶性有机碳 DOC | 全氮 TN | 碱解氮 AN | 有效磷 AP | 速效钾 AK |
---|---|---|---|---|---|---|---|
病理营养型 Pathotroph | 0.087 | 0.600*** | 0.563*** | 0.428** | 0.394* | 0.291 | 0.517** |
腐生营养型 Saprotroph | -0.180 | 0.286 | 0.249 | 0.11 | 0.204 | 0.058 | 0.194 |
共生营养型 Symbiotroph | 0.570** | -0.535** | -0.323 | -0.597*** | -0.525** | -0.698*** | -0.503** |
[1] |
FAN M, SHEN J, YUAN L, JIANG R, CHEN X, DAVIES W J, ZHANG F . Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. Journal of Experimental Botany, 2012,63(1):13.
doi: 10.1093/jxb/err248 |
[2] | 田慎重, 王瑜, 张玉凤, 边文范, 董亮, 罗加法, 郭洪海 . 旋耕转深松和秸秆还田增加农田土壤团聚体碳库. 农业工程学报, 2017,24(33):133-140. |
TIAN S Z, WANG Y, ZHANG Y F, BIAN W F, DONG L, LUO J F, GUO H H . Residue returning with subsoiling replacing rotary tillage improving aggregate and associated carbon. Transactions of the Chinese Society of Agricultural Engineering, 2017,24(33):133-140. (in Chinese) | |
[3] | 宋明伟, 李爱宗, 蔡立群, 张仁陟 . 耕作方式对土壤有机碳库的影响. 农业环境科学学报, 2008,27(2):622-626. |
SONG M W, LI A Z, CAI L Q, ZHANG R Z . Effects of different tillage methods on soil organic carbon pool. Journal of Agro- Environment Science, 2008,27(2):622-626. (in Chinese) | |
[4] | 张建军, 王勇, 樊廷录, 郭天文, 赵刚, 党翼, 王磊, 李尚中 . 耕作方式与施肥对陇东旱塬冬小麦-春玉米轮作农田土壤理化性质及产量的影响. 应用生态学报, 2013,24(4):1001-1008. |
ZHANG J J, WANG Y, FAN T L, GUO T W, ZHAO G, DANG Y, WANG L, LI S Z . Effects of different tillage and fertilization modes on the soil physical and chemical properties and crop yield under winter wheat/spring corn rotation on dryland of east Gansu, Northwest China. Chinese Journal of Applied Ecology, 2013,24(4):1001-1008. (in Chinese) | |
[5] |
赵亚丽, 薛志伟, 郭海斌, 穆心愿, 李潮海 . 耕作方式与秸秆还田对冬小麦-夏玉米耗水特性和水分利用效率的影响. 中国农业科学, 2014,47(17):3359-3371.
doi: 10.3864/j.issn.0578-1752.2014.17.004 |
ZHAO Y L, XUE Z W, GUO H B, MU X Y, LI C H . Effects of tillage and straw returning on water consumption characteristics and water use efficiency in the winter wheat and summer maize rotation system. Scientia Agricultura Sinica, 2014,47(17):3359-3371. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.17.004 |
|
[6] | 杨学明, 张晓平, 方华军, 梁爱珍, 齐晓宁, 王洋 . 北美保护性耕作及对中国的意义. 应用生态学报, 2004,2(15):335-340. |
YANG X M, ZHANG X P, FANG H J, LIANG A Z, QI X N, WANG Y . Conservation tillage systems in North America and their significance for China. Chinese Journal of Applied Ecology, 2004,2(15):335-340. (in Chinese) | |
[7] | 陈丹梅, 袁玲, 黄建国, 冀建华, 侯红乾, 刘益仁 . 长期施肥对南方典型水稻土养分含量及真菌群落的影响. 作物学报, 2017,43(2):286-295. |
CHEN D M, YUAN L, HUANG J G, JI J H, HOU H Q, LIU Y R . Influence of long-term fertilizations on nutrients and fungal communities in typical paddy soil of South China. Acta Agronomica Sinica, 2017,43(2):286-295. (in Chinese) | |
[8] | 孙冰洁, 贾淑霞, 张晓平, 梁爱珍, 陈学文, 张士秀, 刘四义, 陈升龙 . 耕作方式对黑土表层土壤微生物生物量碳的影响. 应用生态学报, 2015,26(1):101-107. |
SUN B J, JIA S X, ZHANG X P, LIANG A Z, CHEN X W, ZHANG S X, LIU S Y, CHEN S L . Impact of tillage practices on microbial biomass carbon in top layer of black soils. Chinese Journal of Applied Ecology, 2015,26(1):101-107. (in Chinese) | |
[9] |
AZOOZ R H, ARSHAD M A, FRANZLUEBBERS A J . Pore size distribution and hydraulic conductivity affected by tillage in northwestern Canada. Soil Science Society of America Journal, 1996,60:1197-1201.
doi: 10.2136/sssaj1996.03615995006000040034x |
[10] | 郭梨锦 . 免耕与稻秆还田对稻麦种植系统土壤有机碳库与微生物多样性的影响[D]. 武汉: 华中农业大学, 2018. |
GUO L J . Effects of no-tillage and straw return on soil organic carbon pool and microbial diversity in rice-wheat systems[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese) | |
[11] |
WANG Z T, LIU L, CHEN Q, WEN X X, LIAO Y C . Conservation tillage increases soil bacterial diversity in the dryland of northern China. Agronomy for Sustainable Development, 2016,36(2):28-36.
doi: 10.1007/s13593-016-0366-x |
[12] |
SUN B J, JIA S X, ZHANG S X, MCLAUGHLIN N B, ZHANG X P, LIANG A Z, CHEN X W, WEI S C, LIU S Y . Tillage, seasonal and depths effects on soil microbial properties in black soil of Northeast China. Soil and Tillage Research, 2016,155:421-428.
doi: 10.1016/j.still.2015.09.014 |
[13] | 郭梨锦, 曹凑贵, 张枝盛, 刘天奇, 李成芳 . 耕作方式和秸秆还田对稻田表层土壤微生物群落的短期影响. 农业环境科学学报, 2013,32(8):1577-1584. |
GUO L J, CAO C G, ZHANG Z S, LIU T Q, LI C F . Short-term effects of tillage practices and wheat-straw returned to rice fields on topsoil microbial community structure and microbial diversity in central China. Journal of Agro-Environment Science, 2013,32(8):1577-1584. (in Chinese) | |
[14] | 姚晓东, 王娓, 曾辉 . 磷脂脂肪酸法在土壤微生物群落分析中的应用. 微生物学通报, 2016,43(9):2086-2095. |
YAO X D, WANG W, ZENG H . Application of phospholipid fatty acid method in analyzing soil microbial community composition. Microbiology China, 2016,43(9):2086-2095. (in Chinese) | |
[15] | 聂三安, 王祎, 雷秀美, 赵丽霞, 林瑞余, 王飞, 邢世和 . 黄泥田土壤真菌群落结构和功能类群组成对施肥的响应. 应用生态学报, 2018,29(8):2721-2729. |
NIE S A, WANG W, LEI X M, ZHAO L X, LIN R Y, WANG F, XING S H . Response of fungal community structure and functional group to fertilization in yellow clayey soil. Chinese Journal of Applied Ecology, 2018,29(8):2721-2729. (in Chinese) | |
[16] | 鲍士旦 . 土壤农化分析. 北京: 中国农业出版社, 2000: 34-35, 44-49, 56-58, 81, 106-107. |
BAO S D. Soil and Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000: 34-35, 44-49, 56-58, 81, 106-107. (in Chinese) | |
[17] |
ROUSK J, BÅÅTH E, BROOKES P C, LAUBER C L, LOZUPONE C, CAPORASO J G, KNIGHT R, FIERER N . Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 2010,4(10):1340-1351.
doi: 10.1038/ismej.2010.58 |
[18] |
EDGAR R C . UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013,10(10):996-998.
doi: 10.1038/nmeth.2604 |
[19] |
CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, BITTINGER K, BUSHMAN F D, COSTELLO E K, FIERER N, PEA A G, GOODRICH J K, GORDON J I, HUTTLEY G A, KELLEY S T, KNIGHTS D, KOENIG J E, LEY R E, LOZUPONE C A, MCDONALD D, MUEGGE B D, PIRRUNG M, REEDER J, SEVINSKY J R, TURNBAUGH P J, WALTERS W A, WIDMANN J, YATSUNENKO T, ZANEVELD J, KNIGHT R . QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010,7:335-336.
doi: 10.1038/nmeth.f.303 |
[20] |
WANG Q, GARRITY G M, TIEDJE J M, COLE J R . Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 2007,73(16):5261-5267.
doi: 10.1128/AEM.00062-07 |
[21] | QUAST C, PRUESSE E, YILMAZ P, GERKEN J, SCHWEER T, YARZA P, PEPLIES J , GLÖCKNER F O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 2013,41(1):590-596. |
[22] | SCHLOSS P D, GEVERS D, WESTCOTT S L . Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE, 2011,6(12):1-14. |
[23] |
CATHERINE L, ROB K . UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 2005,71:8228-8235.
doi: 10.1128/AEM.71.12.8228-8235.2005 |
[24] | DE'ATH G . Multivariate Regression trees: A new technique for modeling species-environment relationships. Ecology, 2002,83(4):1105-1117. |
[25] | NGUYEN N H, SONG Z, BATES S T, BRANCO S, TEDERSOO L, MENKE J, SCHILLING, JONATHAN S, KENNEDY P G . Funguild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 2015,20:241-248. |
[26] |
FRĄC M, HANNULA S E, BEŁKA M, JĘDRYCZKA M . Fungal biodiversity and their role in soil health. Frontiers in Microbiology, 2018,9:1-9.
doi: 10.3389/fmicb.2018.00001 |
[27] | 肖礼, 黄懿梅, 赵俊峰, 周俊英, 郭泽慧, 刘洋 . 土壤真菌组成对黄土高原梯田种植类型的响应. 中国环境科学, 2017,37(8):3151-3158. |
XIAO L, HUANG Y M, ZHAO J F, ZHOU J Y, GUO Z H, LIU Y . High-throughput sequencing revealed soil fungal communities under three terrace agrotypes on the loess plateau. China Environmental Science, 2017,37(8):3151-3158. (in Chinese) | |
[28] | 李锐, 刘瑜, 褚贵新 . 不同种植方式对绿洲农田土壤酶活性与微生物多样性的影响. 应用生态学报, 2015,26(2):490-496. |
LI R, LIU Y, CHU G X . Effects of different cropping patterns on soil enzyme activities and soil microbial community diversity in oasis farmland. Chinese Journal of Applied Ecology, 2015,26(2):490-496. (in Chinese) | |
[29] | 何玉梅, 张仁陟, 张丽华, 解开治 . 不同耕作措施对土壤真菌群落结构与生态特征的影响. 生态学报, 2007,27(1):113-119. |
HE Y M, ZHANG R Z, ZHANG L H, XIE K Z . Effects of different tillage practices on fungi community structure and ecologic characteristics in loess soils. Acta Ecologica Sinica, 2007,27(1):113-119. (in Chinese) | |
[30] | 季凌飞, 倪康, 马立锋, 陈兆杰, 赵远艳, 阮建云, 郭世伟 . 不同施肥方式对酸性茶园土壤真菌群落的影响. 生态学报, 2018,38(22):1-8. |
JI L F, NI K, MA L F, CHEN Z J, ZHAO Y Y, RUAN J Y, GUO S W . Effect of different fertilizer regimes on the fungal community of acidic tea-garden soil. Acta Ecologica Sinica, 2018,38(22):1-8. (in Chinese) | |
[31] |
WANG J, RHODES G, HUANG Q, SHEN Q R . Plant growth stages and fertilization regimes drive soil fungal community compositions in a wheat-rice rotation system. Biology and Fertility of Soils, 2018,54(6):731-742.
doi: 10.1007/s00374-018-1295-4 |
[32] | ESSEL E, LI L, DENG C, XIE J, ZHANG R, LUO Z, CAI L . Evaluation of bacterial and fungal diversity in a long-term spring wheat-field pea rotation field under different tillage practices. Canadian Journal of Soil Science, 2018,98:1-19. |
[33] |
SCHLATTER D C, SCHILLINGER W F, BARY A I, SHARRATT B, PAULITZ T C . Biosolids and conservation tillage: Impacts on soil fungal communities in dryland wheat-fallow cropping systems. Soil Biology and Biochemistry, 2017,115:556-567.
doi: 10.1016/j.soilbio.2017.09.021 |
[34] |
ANNA G, JAROSŁAW G . Fungal genetics and functional diversity of microbial communities in the soil under long-term monoculture of maize using different cultivation techniques. Frontiers in Microbiology, 2018,9:1-9.
doi: 10.3389/fmicb.2018.00001 |
[35] | 张经廷, 张丽华, 吕丽华, 董志强, 姚艳荣, 金欣欣, 姚海坡, 贾秀领 . 还田作物秸秆腐解及其养分释放特征概述. 核农学报, 2018,32(11):2274-2280. |
ZHANG J T, ZHANG L H, LYU L H, DONG Z Q, YAO Y R, JIN X X, YAO H P, JIA X L . Overview of the characteristics of crop straw decomposition and nutrients release of returned field crops. Journal of Nuclear Agricultural Sciences, 2018,32(11):2274-2280. (in Chinese) | |
[36] |
LAUBER C L, STRICKLAND M S, BRADFORD M A, FIERER N . The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 2008,40(9):2407-2415.
doi: 10.1016/j.soilbio.2008.05.021 |
[37] | NTHONY M A, FREY S D, STINSON K A . Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere, 2017,8(9):1-17. |
[38] | 董印丽, 李振峰, 王若伦, 卜学平, 付建敏, 董秀秀 . 华北地区小麦、玉米两季秸秆还田存在问题及对策研究. 中国土壤与肥料, 2018(1):159-163. |
DONG Y L, LI Z F, WANG R L, BU X P, FU J M, DONG X X . Study on the problems and countermeasures of returning wheat and corn stalks into the soil in north China.Soils and Fertilizers Sciences in China, 2018(1):159-163. (in Chinese) | |
[39] | 李秀璋 . 醉马草内生真菌与宿主种带真菌、根际微生物的互作及其进化研究[D]. 兰州: 兰州大学, 2017. |
LI X Z . Study on the evolution and interactions of Epichloë gansuensis with host seed-borne fungi and rhizospheric microorganism[D]. Lanzhou: Lanzhou University, 2017. (in Chinese) | |
[40] |
LIU J, SUI Y, YU Z, SHI Y, CHU, H, JIN J, LIU X, WANG G . Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biology and Biochemistry, 2015,83:29-39.
doi: 10.1016/j.soilbio.2015.01.009 |
[41] |
WANG Z, CHEN Q, LIU L, WEN X, LIAO Y . Responses of soil fungi to 5-year conservation tillage treatments in the drylands of northern China. Applied Soil Ecology, 2016,101:132-140.
doi: 10.1016/j.apsoil.2016.02.002 |
[42] | 王慧颖, 徐明岗, 周宝库, 段英华 . 黑土细菌及真菌群落对长期施肥响应的差异及其驱动因素. 中国农业科学, 2018,51(5):914-925. |
WANG H Y, XU M G, ZHOU B K, MA X, DUAN Y H . Response and driving factors of bacterial and fungal community to long-term fertilization in black soil. Scientia Agricultura Sinica, 2018,51(5):914-925. (in Chinese) | |
[43] |
STRICKLAND M S, ROUSK J . Considering fungal:bacterial dominance in soils-Methods, controls, and ecosystem implications. Soil Biology and Biochemistry, 2010,42(9):1385-1395.
doi: 10.1016/j.soilbio.2010.05.007 |
[44] | 裴振, 孔强, 郭笃发 . 盐生植被演替对土壤微生物碳源代谢活性的影响. 中国环境科学, 2017,37(1):373-380. |
PEI Z, KONG Q, GUO D F . Effect of succession of halophytic vegetation on soil microbial carbon metabolic activity. China Environmental Science, 2017,37(1):373-380. (in Chinese) | |
[45] | ZHANG T, WANG N, LIU H, ZHANG Y Q, YU L Y . Soil pH is a key determinant of soil fungal community composition in the Ny-Ålesund region, Svalbard (High Arctic). Frontiers in Microbiology, 2016,7:1-10. |
[46] |
HÖGBERG M N, YARWOOD S A, MYROLD D D . Fungal but not bacterial soil communities recover after termination of decadal nitrogen additions to boreal forest. Soil Biology and Biochemistry, 2014,72:35-43.
doi: 10.1016/j.soilbio.2014.01.014 |
[47] | 李永春, 梁雪, 李永夫, 王祈, 陈俊辉, 徐秋芳 . 毛竹入侵阔叶林对土壤真菌群落的影响. 应用生态学报, 2016,27(2):585-592. |
LI Y C, LIANG X, LI Y F, WANG Q, CHEN J H, XU Q F . Effects of Phyllostachys edulis invasion of native broadleaf forest on soil fungal community. Chinese Journal of Applied Ecology, 2016,27(2):585-592. (in Chinese) | |
[48] |
ROUSK J, BROOKES P C, BAATH E . Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 2009,75(6):1589-1596.
doi: 10.1128/AEM.02775-08 |
[1] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[2] | 王良,刘元元,钱欣,张慧,代红翠,刘开昌,高英波,方志军,刘树堂,李宗新. 单季麦秸还田促进小麦-玉米周年碳效率和经济效益协同提高[J]. 中国农业科学, 2022, 55(2): 350-364. |
[3] | 马雪萌,余成敏,赛小玲,刘贞,桑海洋,崔百明. PSORA:一种基于高通量测序的T-DNA插入位点分析方法[J]. 中国农业科学, 2022, 55(15): 2875-2882. |
[4] | 马立晓,李婧,邹智超,蔡岸冬,张爱平,李贵春,杜章留. 免耕和秸秆还田对我国土壤碳循环酶活性影响的荟萃分析[J]. 中国农业科学, 2021, 54(9): 1913-1925. |
[5] | 靳玉婷,刘运峰,胡宏祥,穆静,高梦瑶,李先藩,薛中俊,龚静静. 持续性秸秆还田配施化肥对油菜-水稻轮作周年氮磷径流损失的影响[J]. 中国农业科学, 2021, 54(9): 1937-1951. |
[6] | 李旭,董炜灵,宋阿琳,李艳玲,卢玉秋,王恩召,刘雄舵,王萌,范分良. 秸秆添加量对土壤生物固氮速率和固氮菌群落特征的影响[J]. 中国农业科学, 2021, 54(5): 980-991. |
[7] | 杜宇,祝智威,王杰,王秀娜,蒋海宾,范元婵,范小雪,陈华枝,隆琦,蔡宗兵,熊翠玲,郑燕珍,付中民,陈大福,郭睿. 利用第三代纳米孔长读段测序技术构建和注释蜜蜂球囊菌的全长转录组[J]. 中国农业科学, 2021, 54(4): 864-876. |
[8] | 黄明,吴金芝,李友军,付国占,赵凯男,张振旺,杨中帅,侯园泉. 耕作方式和氮肥用量对旱地小麦产量、蛋白质含量和土壤硝态氮残留的影响[J]. 中国农业科学, 2021, 54(24): 5206-5219. |
[9] | 王新媛,赵思达,郑险峰,王朝辉,何刚. 秸秆还田和氮肥用量对冬小麦产量和氮素利用的影响[J]. 中国农业科学, 2021, 54(23): 5043-5053. |
[10] | 张梦亭, 刘萍, 黄丹丹, 贾淑霞, 张晓珂, 张士秀, 梁文举, 陈学文, 张延, 梁爱珍. 东北黑土线虫群落对长期免耕后土壤扰动的响应[J]. 中国农业科学, 2021, 54(22): 4840-4850. |
[11] | 邵美琪,赵卫松,苏振贺,董丽红,郭庆港,马平. 盐胁迫下枯草芽孢杆菌NCD-2对番茄促生作用及对土壤微生物群落结构的影响[J]. 中国农业科学, 2021, 54(21): 4573-4584. |
[12] | 王瑾瑜,程文龙,槐圣昌,武红亮,邢婷婷,于伟家,武际,李敏,卢昌艾. 深翻、有机无机肥配施对稻田水分渗漏和氮素淋溶的影响[J]. 中国农业科学, 2021, 54(20): 4385-4395. |
[13] | 赵卫松,郭庆港,苏振贺,王培培,董丽红,胡卿,鹿秀云,张晓云,李社增,马平. 马铃薯健株与黄萎病株根际土壤真菌群落结构及其对碳源利用特征[J]. 中国农业科学, 2021, 54(2): 296-309. |
[14] | 黄子粤,刘文君,覃仁柳,庞师婵,肖健,杨尚东. 不同品种南瓜内生细菌多样性及PICRUSt基因功能预测分析[J]. 中国农业科学, 2021, 54(18): 4018-4032. |
[15] | 柴如山,徐悦,程启鹏,王擎运,马超,叶新新,章力干,郜红建. 安徽省主要作物秸秆养分资源量及还田利用潜力[J]. 中国农业科学, 2021, 54(1): 95-109. |
|