中国农业科学 ›› 2019, Vol. 52 ›› Issue (1): 45-55.doi: 10.3864/j.issn.0578-1752.2019.01.005
贺静澜1(),张明1,刘瑞莹1,万贵钧1,潘卫东2,陈法军1(
)
收稿日期:
2018-08-02
接受日期:
2018-09-11
出版日期:
2019-01-01
发布日期:
2019-01-12
通讯作者:
陈法军
基金资助:
HE JingLan1(),ZHANG Ming1,LIU RuiYing1,WAN GuiJun1,PAN WeiDong2,CHEN FaJun1(
)
Received:
2018-08-02
Accepted:
2018-09-11
Online:
2019-01-01
Published:
2019-01-12
Contact:
FaJun CHEN
摘要:
【目的】 隐花色素(cryptochrome, Cry)和铁硫簇蛋白IscA(iron-sulfur cluster assembly,即MagR)是生物体内潜在的磁受体蛋白,本研究通过RNA干扰(RNAi)技术,分别敲减褐飞虱(Nilaparvata lugens)体内的磁响应关键基因NlCry1、NlCry2和NlMagR,旨在探明近零磁场(near-zero magnetic field,NZMF)环境下,以上3种基因在褐飞虱寿命调节过程中的作用,从而间接探讨这3种基因对磁场的响应情况。【方法】 采用RNAi技术,以实验室正常磁场环境下稳定饲养的短翅初羽化褐飞虱雌雄成虫为材料,通过向其体内注射双链RNA(dsRNA)分别抑制磁响应关键基因NlCry1、NlCry2和NlMagR,随后立即分别放入正常磁场(geomagnetic field,GMF)和近零磁场中,于每日相同时间观察记录试虫寿命。同时于注射后的1、2和3 d通过RNAiso Plus法提取GMF中褐飞虱雌成虫总RNA,反转录合成第一链DNA,后采用实时荧光定量PCR(RT-qPCR)技术检测该基因的表达情况,以确定基因干扰效率。【结果】 注射dsNlCry1后,褐飞虱雌雄成虫寿命在近零磁场和正常磁场间均无显著差异。注射dsNlCry2后,近零磁场中褐飞虱雌雄成虫寿命比正常磁场分别显著延长27.78%和50.04%;此外,与注射dsGFP处理相比,正常磁场下注射dsNlCry2的雌成虫寿命缩短,而近零磁场下注射dsNlCry2的雌成虫寿命延长,但二者差异均不显著;近零磁场和正常磁场下注射dsNlCry2的雄成虫寿命均缩短(25.41%和10.73%),且正常磁场下差异显著。近零磁场中,注射dsNlMagR的雌成虫寿命较注射dsGFP的寿命显著缩短了16.48%,而雄成虫寿命在磁场间、干扰处理间的差异均不显著。【结论】 磁场变化下褐飞虱雌雄成虫体内3种磁响应关键基因对其寿命的调节功能存在差异。其中,NlCry2对磁场变化存在敏感响应,表现为敲减该基因与磁场变化的互作显著地影响雌雄成虫寿命,且表现出“性二型性”;NlMagR也可对磁场变化产生明显响应,但该响应只存在于雌成虫;此外,NlCry1对磁场变化无响应,该基因或与褐飞虱雌雄成虫寿命调节无关。
贺静澜,张明,刘瑞莹,万贵钧,潘卫东,陈法军. 近零磁场下干扰磁响应关键基因对褐飞虱寿命的影响[J]. 中国农业科学, 2019, 52(1): 45-55.
HE JingLan,ZHANG Ming,LIU RuiYing,WAN GuiJun,PAN WeiDong,CHEN FaJun. Effects of the Interference of Key Magnetic Response Genes on the Longevity of Brown Planthopper (Nilaparvata lugens) Under Near-Zero Magnetic Field[J]. Scientia Agricultura Sinica, 2019, 52(1): 45-55.
表1
本试验所用引物及序列"
引物用途 Use of primers | 引物名称 Primer name | 引物序列 Primer sequence (5′-3′) |
---|---|---|
cDNA克隆 cDNA cloning | dsNlCry1-F | TAATACGACTCACTATAGGGTCAGACATGGGCTTCGATT |
dsNlCry1-R | TAATACGACTCACTATAGGGCATTTGGTAAGTTAGCGGTGGA | |
dsNlCry2-F | TAATACGACTCACTATAGGGTGTCAGCATCAATAAGTGGAGG | |
dsNlCry2-R | TAATACGACTCACTATAGGGGCACACCAAACTTGTCGTC | |
dsNlMagR-F | TAATACGACTCACTATAGGGAGAAAGGAAAGTTTGACGAAG | |
dsNlMagR-R | TAATACGACTCACTATAGGGAGCCCTAAATATTAACATCGT | |
dsGFP-F | TAATACGACTCACTATAGGGACGTAAACGGCCACAAGTTC | |
dsGFP-R | TAATACGACTCACTATAGGGTGTTCTGCTGGTAGTGGTCG | |
实时荧光定量PCR RT-qPCR | qNlCry1-F | CAGACATGGGCTTCGATTTCA |
qNlCry1-R | ACCAGCACTTTCTCCGTCAAAT | |
qNlCry2-F | CGCATACTCTCTACAGACTTGAT | |
qNlCry2-R | CACCGTCTGGAATTTGCGATAC | |
qNlMagR-F | CGTTTAATACCTTCAAGAGCAGCAC | |
qNlMagR-R | CCCTACTTTCAAGCCGATAGCAT | |
qActin-F | CTTCTAAACGCCAACCACTCC | |
qActin-R | TCACCCGAAATCACTCACGA | |
q18S-F | TGTCTGCTTAATTGCGATAACGAAC | |
q18S-R | CCTCAAACTTCCATCGGCTTG |
[1] |
朱晓璐, 王江云 . 地磁场与生物的磁感应现象. 自然杂志, 2013,35(3):200-206.
doi: 10.3969/j.issn.0253-9608.2013.03.007 |
ZHU X L, WANG J Y . The effect of geomagnetism on biomagnetism. Chinese Journal of Nature, 2013,35(3):200-206. (in Chinese)
doi: 10.3969/j.issn.0253-9608.2013.03.007 |
|
[2] |
DINI L, ABBRO L . Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron, 2005,36(3):195-217.
doi: 10.1016/j.micron.2004.12.009 |
[3] |
莫炜川, 刘缨, 赫荣乔 . 亚磁场及其生物响应机制. 生物化学与生物物理进展, 2012,39(9):835-842.
doi: 10.3724/SP.J.1206.2011.00597 |
MO W C, LIU Y, HE R Q . A biological perspective of the hypomagnetic field: from definition towards mechanism. Progress in Biochemistry and Biophysics, 2012,39(9):835-842. (in Chinese)
doi: 10.3724/SP.J.1206.2011.00597 |
|
[4] | 贺静澜, 万贵钧, 张明, 潘卫东, 陈法军 . 生物地磁响应研究进展. 生物化学与生物物理进展, 2018,45(7):689-704. |
HE J L, WAN G J, ZHANG M, PAN W D, CHEN F J . Progress in the study of giomagnetic responses of organisms. Progress in Biochemistry and Biophysics, 2018,45(7):689-704. (in Chinese) | |
[5] |
LOHMANN K J, LOHMANN C M, PUTMAN N F . Magnetic maps in animals: nature’s GPS. The Journal of Experimental Biology, 2007,210(21):3697-3705.
doi: 10.1242/jeb.001313 pmid: 17951410 |
[6] |
SCHENCK J F . Safety of strong, static magnetic fields. Journal of Magnetic Resonance Imaging, 2000,12(1):2-19.
doi: 10.1002/1522-2586(200007)12:1<2::AID-JMRI2>3.0.CO;2-V pmid: 10931560 |
[7] |
ROSEN A D . Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochemistry and Biophysics, 2003,39(2):163-173.
doi: 10.1385/CBB:39:2:163 pmid: 14515021 |
[8] |
王学斌, 徐慕玲, 李兵, 李东风, 蒋锦昌 . 亚磁空间中孵化的一日龄小鸡味觉回避长时记忆受损. 科学通报, 2003,48(19):2042-2045.
doi: 10.3321/j.issn:0023-074X.2003.19.008 |
WANG X B, XU M L, LI B, LI D F, JIANG J C . Long-term memory was impaired in one-trial passive avoidance task of day-old chicks hatching from hypomagnetic field space. Chinese Science Bulletin, 2003,48(19):2042-2045. (in Chinese)
doi: 10.3321/j.issn:0023-074X.2003.19.008 |
|
[9] | ZHANG B, LU H, WANG X, ZHOU X J, XU S Y, ZHANG K, JIANG J C, LI Y, GUO A K . Exposure to hypomagnetic field space for multiple generations causes amnesia in Drosophila melanogaster. Neuroscience Letters, 2004,371(2/3):190-195. |
[10] |
PRATO F S, ROBERTSON J A, DESJARDINS D, HENSEL J, THOMAS A W . Daily repeated magnetic field shielding induces analgesia in CD-1 mice. Bioelectromagnetics, 2005,26(2):109-117.
doi: 10.1002/bem.20056 pmid: 15672364 |
[11] | MO W C, FU J P, DING H M, LIU Y, HUA Q, HE R Q . Hypomagnetic field alters circadian rhythm and increases algesia in adult male mice. Progress in Biochemistry and Biophysics, 2015,42(7):639-646. |
[12] |
BLISS V L, HEPPNER F H . Circadian activity rhythm influenced by near zero magnetic field. Nature, 1976,261(5559):411-412.
doi: 10.1038/261411a0 pmid: 934271 |
[13] |
FESENKO E E, MEZHEVIKINA L M, OSIPENKO M A, GORDON R Y, KHUTZIAN S S . Effect of the “zero” magnetic field on early embryogenesis in mice. Electromagnetic Biology and Medicine, 2010,29(1/2):1-8.
doi: 10.3109/15368371003627290 pmid: 20230271 |
[14] |
MO W C, LIU Y, COOPER H M, HE R Q . Altered development of Xenopus embryos in a hypogeomagnetic field. Bioelectromagnetics, 2012,33(3):238-246.
doi: 10.1002/bem.20699 pmid: 21853450 |
[15] |
BINHI V N, SARIMOV R M . Zero magnetic field effect observed in human cognitive processes. Electromagnetic Biology and Medicine, 2009,28(3):310-315.
doi: 10.3109/15368370903167246 pmid: 20001705 |
[16] | BINHI V N , SARIMOV R M. Effect of the hypomagnetic field on the size of the eye pupil. Biological Physics, 2013, arXiv: 1302. 2741. |
[17] |
GURFINKEL Y I, VASIN A L, MATVEEVA T A, SASONKO M L . Evaluation of the hypomagnetic environment effects on capillary blood circulation, blood pressure and heart rate. Human Physiology, 2016,42(7):809-814.
doi: 10.1134/S0362119716070057 pmid: 25087408 |
[18] |
SHAW J, BOYD A, HOUSE M, WOODWARD R, MATHES F, COWIN G, SAUNDERS M, BAER B . Magnetic particle-mediated magnetoreception. Journal of the Royal Society Interface, 2015,12(110):0499.
doi: 10.1098/rsif.2015.0499 pmid: 26333810 |
[19] |
RITZ T, ADEM S, SCHULTEN K . A model for photoreceptor-based magnetoreception in birds. Biophysical Journal, 2000,78(2):707-718.
doi: 10.1016/S0006-3495(00)76629-X |
[20] | WILTSCHKO R, WILTSCHKO W . Magnetic Orientation in Animals. Berlin Heidelberg: Springer-Verlag, 1995: 33-41. |
[21] |
QIN S Y, YIN H, YANG C L, DOU Y F, LIU Z M, ZHANG P, YU H, HUANG Y L, FENG J, HAO J F, HAO J, DENG L Z, YAN X Y, DONG X L, ZHAO Z X, JIANG T J, WANG H W, LUO S J, XIE C . A magnetic protein biocompass. Nature Materials, 2016,15(2):217-226.
doi: 10.1038/nmat4484 pmid: 26569474 |
[22] |
LONG X, YE J, ZHAO D, ZHANG S J . Magnetogenetics: remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor. Science Bulletin, 2015,60(24):2107-2119.
doi: 10.1007/s11434-015-0902-0 pmid: 4692962 |
[23] |
ZHANG X, LI J F, WU Q J, LI B, JIANG J C . Effects of hypomagnetic field on noradrenergic activities in the brainstem of golden hamster. Bioelectromagnetics, 2007,28(2):155-158.
doi: 10.1002/bem.20290 pmid: 17016848 |
[24] |
CHAPMAN J W, DRAKE V A, REYNOLDS D R . Recent insights from radar studies of insect flight. Annual Review of Entomology, 2011,56:337-356.
doi: 10.1146/annurev-ento-120709-144820 |
[25] |
PAN W D, WAN G J, XU J J, LI X M, LIU Y X, QI L P, CHEN F J . Evidence for the presence of biogenic magnetic particles in the nocturnal migratory brown planthopper, Nilaparvata lugens. Scientific Reports, 2016,6:18771.
doi: 10.1038/srep18771 pmid: 4700427 |
[26] |
WAN G J, JIANG S L, ZHAO Z C, XU J J, TAO X R, SWORD G A, GAO Y B, PAN W D, CHEN F J . Bio-effects of near-zero magnetic fields on the growth, development and reproduction of small brown planthopper, Laodelphax striatellus and brown planthopper, Nilaparvata lugens. Journal of Insect Physiology, 2014,68:7-15.
doi: 10.1016/j.jinsphys.2014.06.016 pmid: 24995837 |
[27] |
WAN G J, YUAN R, WANG W J, FU KY, ZHAO J Y, JIANG S L, PAN W D, SWORD G A, CHEN F J . Reduced geomagnetic field may affect positive phototaxis and flight capacity of a migratory rice planthopper. Animal Behaviour, 2016,121:107-116.
doi: 10.1016/j.anbehav.2016.08.024 |
[28] | XU J J, ZHANG Y C, WU J Q, WANG W H, LI Y, WAN G J, CHEN F J, SWORD G A, PAN W D . Molecular characterization, spatial-temporal expression and magnetic response patterns of the iron-sulfur cluster assembly1 (IscA1) in the rice planthopper, Nilaparvata lugens. Insect Science, 2017, DOI 10.1111/1744-7917. 12546. |
[29] |
XU J J, WAN G J, HU D B, HE J, CHEN F J, WANG X H, HUA H X, PAN W D . Molecular characterization, tissue and developmental expression profiles of cryptochrome genes in wing dimorphic brown planthoppers, Nilaparvata lugens. Insect Science, 2016,23(6):805-818.
doi: 10.1111/1744-7917.12256 pmid: 26227859 |
[30] |
GEGEAR R J, CASSELMAN A, WADDELL S, REPPERT S M . CRYPTOCHROME mediates light-dependent magnetosensitivity in Drosophila. Nature, 2008,454(7207):1014-1018.
doi: 10.1038/nature07183 pmid: 2559964 |
[31] | YOSHII T, AHMAD M , HELFRICH-FÖRSTER C. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biology, 2009,7(4):e1000086. |
[32] |
FEDELE G, GREEN E W, ROSATO E, KYRIACOU C P . An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nature Communications, 2014,5:4391.
doi: 10.1038/ncomms5391 pmid: 25019586 |
[33] |
WAN G J, WANG W J, XU J J, YANG Q F, DAI M J, ZHANG F J, SWORD G A, PAN W D, CHEN F J . Cryptochromes and hormone signal transduction under near-zero magnetic fields: New clues to magnetic field effects in a rice planthopper. PLoS ONE, 2015,10(7):e0132966.
doi: 10.1371/journal.pone.0132966 pmid: 4501744 |
[34] |
ZHU H, YUAN Q, FROY O, CASSELMAN A, REPPERT S M . The two CRYs of the butterfly. Current Biology, 2005,15(23):R953-R954.
doi: 10.1016/j.cub.2005.11.030 pmid: 16332522 |
[35] |
HENRICH V C, RYBCZYNSKI R, GILBERT L I . Peptide hormones, steroid hormones, and puffs: mechanisms and models in insect development. Vitamins and Hormones, 1998,55:73-125.
doi: 10.1016/S0083-6729(08)60934-6 |
[36] |
STAY B . A review of the role of neurosecretion in the control of juvenile hormone synthesis: A tribute to Berta Scharrer. Insect Biochemistry and Molecular Biology, 2000,30(8/9):653-662.
doi: 10.1016/S0965-1748(00)00036-9 pmid: 1087610810876108 |
[37] | YAMANAKA N, REWITZ K F , O’CONNOR M B. Ecdysone control of developmental transitions: Lessons from Drosophila research. Annual Review of Entomology, 2013,58:497-516. |
[38] |
DUBROVSKY E B . Hormonal cross talk in insect development. TRENDS in Endocrinology and Metabolism, 2005,16(1):6-11.
doi: 10.1016/j.tem.2004.11.003 pmid: 15620543 |
[39] |
SANDRELLI F, COSTA R, KYRIACOU C P, ROSATO E . Comparative analysis of circadian clock genes in insects. Insect Molecular Biology, 2008,17(5):447-463.
doi: 10.1111/j.1365-2583.2008.00832.x pmid: 18828836 |
[40] | YAMANAKA N, ROMERO N M, MARTIN F A, REWITZ K F, SUN M , O’CONNOR M B, LÉOPOLD P. Neuroendocrine control of Drosophila larval light preference. Science, 2013,341(6150):1113-1116. |
[41] | JENSEN L T, CULOTTA V C . Role of Saccharomyces cerevisiae ISA1 and ISA2 in iron homeostasis. Molecular and Cellular Biology, 2000,20(11):3918-3927. |
[42] |
KAUT A, LANGE H, DIEKERT K, KISPAL G, LILL R . Isa1p is a component of the mitochondrial machinery for maturation of cellular iron-sulfur proteins and requires conserved cysteine residues for function. The Journal of Biological Chemistry, 2000,275(21):15955-15961.
doi: 10.1074/jbc.M909502199 pmid: 10748136 |
[43] |
PELZER W, MUHLENHOFF U, DIEKERT K, SIEGMUND K, KISPAL G, LILL R . Mitochondrial Isa2p plays a crucial role in the maturation of cellular iron-sulfur proteins. FEBS Letters, 2000,476(3):134-139.
doi: 10.1016/S0014-5793(00)01711-7 pmid: 10913600 |
[44] |
NILSSON R, SCHULTZ I J, PIERCE E L, SOLTIS K A, NARANUNTARAT A, WARD D M, BAUGHMAN J M, PARADKAR P N, KINGSLEY P D, CULOTTA V C, KAPLAN J, PALIS J, PAW B H, MOOTHA V K . Discovery of genes essential for Heme biosynthesis through large-scale gene expression analysis. Cell Metabolism, 2009,10(2):119-130.
doi: 10.1016/j.cmet.2009.06.012 pmid: 19656490 |
[45] |
AL-HASSNAN Z N, AL-DOSARY M, ALFADHEL M, FAQEIH E A, ALSAGOB M, KENANA R, ALMASS R, AL-HARAZI O S, AL-HINDI H, MALIBARI O I, ALMUTARI F B, TULBAH S, ALHADEQ F, AL-SHEDDI T, ALAMRO R, AL-ASMARI A, ALMUNTASHRI M, ALSHAALAN H, AL-MOHANNA F A, COLAK D, KAYA N . ISCA2 mutation causes infantile neurodegenerative mitochondrial disorder. Journal of Medical Genetics, 2015,52(3):186-194.
doi: 10.1136/jmedgenet-2014-102592 pmid: 25539947 |
[46] |
GELLING C, DAWES I W, RICHHARDT N, LILL R , MÜHLENHOFF U. Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes. Molecular and Cellular Biology, 2008,28(5):1851-1861.
doi: 10.1128/MCB.01963-07 pmid: 911106 |
[1] | 关若冰,李海超,苗雪霞. RNA生物农药的商业化现状及存在问题[J]. 中国农业科学, 2022, 55(15): 2949-2960. |
[2] | 尹飞,李振宇,SAMINA Shabbir,林庆胜. P450基因在氯虫苯甲酰胺不同抗性品系小菜蛾中的表达及功能分析[J]. 中国农业科学, 2022, 55(13): 2562-2571. |
[3] | 邬伟,徐慧丽,王正亮,俞晓平. 褐飞虱丝氨酸蛋白酶抑制剂基因Nlserpin2的克隆及其功能分析[J]. 中国农业科学, 2022, 55(12): 2338-2346. |
[4] | 陈二虎,孟宏杰,陈艳,唐培安. 表皮蛋白基因TcCP14.6和TcLCPA3A参与介导赤拟谷盗对磷化氢的抗性形成[J]. 中国农业科学, 2022, 55(11): 2150-2160. |
[5] | 徐翔,解屹,宋丽云,申莉莉,李莹,王勇,刘明宏,刘东阳,王小彦,赵存孝,王凤龙,杨金广. 高效靶向降解烟草花叶病毒核酸的dsRNA筛选与大量制备[J]. 中国农业科学, 2021, 54(6): 1143-1153. |
[6] | 葛欣竺,史宇星,王莎莎,刘智慧,蔡文杰,周敏,王世贵,唐斌. 异色瓢虫丙酮酸激酶基因序列分析及其调控海藻糖代谢功能[J]. 中国农业科学, 2021, 54(23): 5021-5031. |
[7] | 谭永安,姜义平,赵静,肖留斌. 绿盲蝽G蛋白偶联受体激酶2基因(AlGRK2)的表达分析及在绿盲蝽生长发育中的功能[J]. 中国农业科学, 2021, 54(22): 4813-4825. |
[8] | 於卫东,潘碧莹,邱玲玉,黄镇,周泰,叶林,唐斌,王世贵. 两个褐飞虱海藻糖转运蛋白基因的结构及调控海藻糖代谢功能[J]. 中国农业科学, 2020, 53(23): 4802-4812. |
[9] | 张道伟,康奎,余亚娅,匡富萍,潘碧莹,陈静,唐斌. 白背飞虱酚氧化酶原PPO基因特性及其免疫应答[J]. 中国农业科学, 2020, 53(15): 3108-3119. |
[10] | 刘晓健,郭俊,张学尧,马恩波,张建珍. 飞蝗核受体基因LmE75的分子特性和功能分析[J]. 中国农业科学, 2020, 53(11): 2219-2231. |
[11] | 姚利晓,范海芳,张庆雯,何永睿,许兰珍,雷天刚,彭爱红,李强,邹修平,陈善春. 柑橘溃疡病抗性相关转录因子CitMYB20的功能[J]. 中国农业科学, 2020, 53(10): 1997-2008. |
[12] | 马雯,刘娇,张学尧,申国华,秦雪梅,张建琴. 飞蝗LmGSTS2的酶学特性及其对马拉硫磷、 p,p’-DDT的代谢分析[J]. 中国农业科学, 2019, 52(8): 1389-1399. |
[13] | 丁艳娟,刘永康,罗雨嘉,邓颖梅,徐红星,唐斌,徐彩娣. 褐飞虱GSK-3调控糖原与海藻糖代谢的潜在功能[J]. 中国农业科学, 2019, 52(7): 1237-1246. |
[14] | 贾盼,张晶,杨洋,刘卫敏,张建珍,赵小明. 飞蝗内表皮结构糖蛋白基因LmAbd-2的表达与功能分析[J]. 中国农业科学, 2019, 52(4): 651-660. |
[15] | 唐斌,沈祺达,曾伯平,肖仲久,邱玲玉,潘碧莹,李昆,张道伟. 褐飞虱一个新的海藻糖合成酶基因的特性、 发育表达及RNAi效果分析[J]. 中国农业科学, 2019, 52(3): 466-477. |
|