[1] ZIMMERMAN H A, OLSON KC, CHEN G, LYNCH C J. Adipose transplant for inborn errors of branched chain amino acid metabolism in mice. Molecular Genetics and Metabolism, 2013, 109(4): 345-353.
[2] BARTEL D P. MicroRNAs: target recognition and regulatory functions. Cell Metabolism, 2009, 136(2): 215-233.
[3] 吴正常, 殷学梅, 孙丽, 夏日炜, 霍永久, 吴圣龙, 包文斌. 猪miR-192/-215的组织表达谱及其关键靶基因的分析. 中国农业科学, 2015, 48(11): 2251-2261.
WU Z C, YIN X M, SUN L, XIA R W, HUO Y J, WU S L, BAO W B. Tissue expression profile and key target genes analysis of pocrcine miR-192 and miR-215. Chinese Agricultural Science, 2015, 48(11): 2251-2261. (in Chinese)
[4] SUN Y, WANG F, WANG L, JIAO Z, FANG J, LI J. MicroRNA-433 regulates apoptosis by targeting PDCD4 in human osteosarcoma cells. Oncology Letters, 2017, 14(2): 2353-2358.
[5] POLSTER B J, WESTAWAY S K, NGUYEN T M, YOON M Y, HAYFLICK S J. Discordant expression of miR-103/7 and pantothenate kinase host genes in mouse. Molecular Genetics and Metabolism, 2010, 101(2-3): 292-295.
[6] HOZOJI M, MUNEHIRA Y, IKEDA Y, MAKISHIMA M, MATSUO M, KIOKA N, UEDA K. Direct interaction of nuclear liver X receptor-beta with ABCA1 modulates cholesterol efflux. The Journal of Biological Chemistry, 2008, 283(44): 30057-30063.
[7] HOEKSTRA M, VAN DER SLUIS R J, KUIPER J, VAN BERKEL T J. Nonalcoholic fatty liver disease is associated with an altered hepatocyte microRNA profile in LDL receptor knockout mice. The Journal of Nutritional Biochemistry, 2012, 23(6): 622-628.
[9] PEAR M, WATTS L, BOOTEN S L, GRAHAM M, MCKAY R, SUBRAMANIAM A, PROPP S, LOLLO B A, FREIER S, BENNETT C F, BHANOT S, MONIA B P. MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabolism, 2006, 3(2): 87-98.
[10] NAKANISHI N, NAKAGAWA Y, TOKUSHIGE N, AOKI N, MATSUZAKA T, ISHII K, YAHAGI N, KOBAYASHI K, YATOH S, TAKAHASHI A, SUZUKI H, URAYAMA O, YAMADA N, SHIMANO H. The up-Regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochemical and Biophysical Research Communications, 2009, 385(4): 492-496.
[11] WALDEN T B, TIMMONS J A, KELLER P, NEDERGAARD J, CANNON B. Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes. Journal of Cellular Physiology, 2009, 8(2): 44-49.
[12] HERMAN M A, SHE P, PERONI O D, LYNCH C J, KAHN B B. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. The Journal of Biological Chemistry, 2010, 285(15): 11348-11356.
[13] 罗红春. 胃癌miRNA表达谱及胃癌中显著下调的miR-9和miR-433的功能研究[D]. 重庆:重庆医科大学, 2010.
LUO H C. MiRNAs expression profiling of gastric carcinoma and function of significantly down-regulated miR-9 and miR-433[D]. Chongqing:Chongqing Medical University, 2010. (in Chinese)
[14] 张芳. 调节NMD通路中SMG5的miR-433的鉴定及miRNA-NMD作用底物调控通路的初步研究[D]. 武汉:华中农业大学, 2014.
ZHANG F. Identification of miR-433 that regulate SNG5 in NMD pathway and preliminary study on miRNA-NMD-substrate regulatory pathway[D]. Wuhan:Huazhong Agricultural University, 2014. (in Chinese)
[15] KIM E J, KANG I H, LEE J W, JANG W G, KOH J T. MiR-433 mediates ERRγ-suppressed osteoblast differentiation via direct targeting to Runx2 mRNA in C3H10T1/2 cells. Life Sciences, 2013, 92(10): 562-568.
[16] XIA L, LI D, LIN C, OU S, LI X, PAN S. Comparative study of joint bioinformatics analysis of underlying potential of 'neurimmiR', miR-212-3P/miR-132-3P, being involved in epilepsy and its emerging role in human cancer. Oncotarget, 2017: 16541.
[17] VAN MEIR E G, HADJIPANAYIS C G, NORDEN A D, SHU H K, WEN P Y, OLSON J J. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA: a Cancer Journal for Clinicians, 2010, 60(3): 166-193.
[18] SUN S, WANG X, XU X, DI H, DU J, XU B, WANG Q, WANG J. MiR-433-3p suppresses cell growth and enhances chemosensitivity by targeting CREB in human glioma. Oncotarget, 2017, 8(3): 5057-5068.
[19] GOTANDA K, HIROTA T, MATSUMOTO N, IEIRI I. MicroRNA-433 negatively regulates the expression of thymidylate synthase (TYMS) responsible for 5-fluorouracil sensitivity in HeLa cells. BioMed Central Cancer, 2013, 13: 369.
[20] YANG Z, TSUCHIYA H, ZHANG Y, HARTNETT M E, WANG L. MicroRNA-433 inhibits liver cancer cell migration by repressing the protein expression and function of cAMP response element-binding protein. The Journal of Biological Chemistry, 2013, 288(40): 28893-28899.
[21] LIN X, RICE K L, BUZZAI M, HEXNER E, COSTA F F, KILPIVAARA O, MULLALLY A, SOARES M B, EBERT B L, LEVINE R, LICHT J D. miR-433 is aberrantly expressed in myeloproliferative neoplasms and suppresses hematopoietic cell growth and differentiation. Leukemia, 2013, 27(2): 344-352.
[22] TANG X, LIN J, WANG G, LU J. MicroRNA-433-3p promotes osteoblast differentiation through targeting DKK1 expression. PLoS One, 2017, 12(6): e0179860.
[23] ESSLINGER S M, SCHWALB B, HELFER S, MICHALIK K M, WITTE H, MAIER K C, MARTIN D, MICHALKE B, TRESCH A, CRAMER P, FÖRSTEMANN K. Drosophila miR-277 controls branched-chain amino acid catabolism and affects lifespan. RNA Biology, 2013, 10(6): 1042-1056.
[24] MAGKOS F, BRADLEY D, SCHWEITZER G G, FINCK B N, EAGON J C, ILKAYEVA O, NEWGARD C B, KLEIN S. Effect of Roux-en-Y gastric bypass and laparoscopic adjustable gastric banding on branched-chain amino acid metabolism. Diabetes, 2013, 62(8): 2757-2761.
[25] LIU R, LI H, FAN W, JIN Q, CHAO T, WU Y, HUANG J, HAO L, YANG X. Leucine supplementation differently modulates branched- Chain amino acid catabolism, mitochondrial function and metabolic profiles at the different stage of insulin resistance in rats on high-fat diet. Diabetes, 2013, 62(8): 2757-2761.
[26] PRADA P O, HIRABARA S M, DE SOUZA C T, SCHENKA A A, ZECCHIN H G, VASSALLO J, VELLOSO L A, CARNEIRO E, CARVALHEIRA J B, CURI R, SAAD M J. L-glutamine supplementation induces insulin resistance in adipose tissue and improves insulin signalling in liver and muscle of rats with diet-induced obesity. Diabetologia, 2007, 50(9): 1949-1959.
[27] ZHAO X, HAN Q, LIU Y, SUN C, GANG X, WANG G. The relationship between branched-Chain amino acid related metabolomic signature and insulin resistance: A systematic review. Journal of Diabetes Research, 2016, 2794591.
[28] SHE P, REID T M, BRONSON S K, VARY T C, HAJNAL A, LYNCH C J, HUTSON S M. Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metabolism, 2007, 6 (3): 181-194.
[29] BOULET M M, CHEVRIER G, GRENIER-LAROUCHE T, PELLETIER M, NADEAU M, SCARPA J, PREHN C, MARETTE A, ADAMSKI J, TCHERNOF A. Alterations of plasma metabolite profiles related to adipose tissue distribution and cardiometabolic risk. American Journal of Physiology Endocrinology and Metabolism, 2015, 309 (8): E736-E746.
[30] CHAVALI V, TYAGI S C, MISHRA P K. Differential expression of dicer, miRNAs, and inflammatory markers in diabetic Ins2+/- Akita hearts. Cell Biochemistry and Biophysics, 2014, 68(1): 25-35. |