中国农业科学 ›› 2022, Vol. 55 ›› Issue (7): 1445-1457.doi: 10.3864/j.issn.0578-1752.2022.07.015
董复成(),马淑丽,时娟娟,张俊梅,崔岩,任有蛇,张春香(
)
收稿日期:
2021-05-14
接受日期:
2021-09-14
出版日期:
2022-04-01
发布日期:
2022-04-18
通讯作者:
张春香
作者简介:
董复成,Tel:16634258464;E-mail: 基金资助:
DONG FuCheng(),MA ShuLi,SHI JuanJuan,ZHANG JunMei,CUI Yan,REN YouShe,ZHANG ChunXiang(
)
Received:
2021-05-14
Accepted:
2021-09-14
Online:
2022-04-01
Published:
2022-04-18
Contact:
ChunXiang ZHANG
摘要:
【目的】探究绵羊附睾视黄酸结合蛋白——载脂蛋白5(lipocalin5,LCN5)在睾丸、附睾不同区段及输精管组织表达特点及其精子中的定位,为LCN5在雄性生殖器官中的功能研究提供理论依据。【方法】选择体重相近((65.23±1.95)kg)、体况良好、健康无病的9月龄公绵羊6只,其中3只使用假阴道法采集精液,3只做无菌去势。快速采集左侧睾丸(testis,T)、附睾输出小管(efferent ducts,ED)、附睾头(caput,E1-E2)、附睾体(corpus,E3-E5)、附睾尾(cauda,E6-E7)及输精管(vas deferens,VS)组织样分别置于液氮和4%多聚甲醛中。使用计算机辅助精子分析仪检测精液中精子、从右侧睾丸、附睾不同区段及输精管中分离出精子的运动学参数;利用Western blot技术和免疫组织化学法检测睾丸、附睾不同区段及输精管中LCN5蛋白表达;采用精子免疫荧光观察睾丸、附睾不同区段及输精管中精子LCN5定位及分布。【结果】(1)精子运动学参数结果表明:附睾尾部和射出精子A级、C级精子数、VAP、VSL、VCL、ALH、BCF、WOB、LIN和STR均显著高于其他区段(P<0.05)。输精管精子中A级精子百分比、VAP、VSL、WOB、LIN均显著高于输出小管,附睾头和附睾体段(P<0.05)。然而,睾丸精子完全无运动能力。(2)Western blot结果显示LCN5在附睾头E1区段表达量最高,在附睾头E2区段、附睾尾E6区段表达量高于附睾体、睾丸和输出小管(P<0.05),定量分析结果显示LCN5蛋白表达量从高到低为:E1>E2>E6>E3≈E5≈E4≈E7>VS>ED>T。(3)睾丸、附睾不同区段及输精管LCN5免疫组化结果表明,LCN5蛋白定位于睾丸长形精子细胞中,在ED主细胞和基底细胞中有微量表达,附睾头、附睾体和附睾尾主细胞、基底细胞及纤毛中大量表达并出现强阳性信号,管腔有颗粒状LCN5信号分散在精子聚集区内;输精管平滑肌细胞中也出现了较弱LCN5阳性信号。(4)睾丸、附睾不同区段及输精管中精子LCN5免疫荧光结果显示,LCN5在睾丸和输出小管精子顶体帽和中段中有微弱信号,在附睾头E1区段中精子顶体前端及尾部中段出现了强阳性信号。精子鞭毛上原生质滴中也有LCN5表达;精子运行到E6区段时,部分精子头部全部被包裹、原生质滴脱落完成成熟,但有些精子尾部仍有原生质滴,直到附睾尾E7区段原生质滴完全脱落。精子表面LCN5在附睾尾和体区段的表达模式与附睾头区段类似。【结论】LCN5蛋白在绵羊雄性生殖器官组织中区域性表达,高度表达在附睾头中,聚集在附睾尾E6区;LCN5蛋白在附睾头、附睾体、附睾尾及输精管的精子表面、鞭毛原生质滴中呈动态分布,这也表明其在精子成熟过程中的潜在功能。总之,LCN5可能在精子发生、成熟、贮存方面发挥重要作用,这也为后续LCN5的功能研究及其开发利用提供了理论参考。
董复成,马淑丽,时娟娟,张俊梅,崔岩,任有蛇,张春香. LCN5蛋白在雄性绵羊生殖器官及精子中的表达定位[J]. 中国农业科学, 2022, 55(7): 1445-1457.
DONG FuCheng,MA ShuLi,SHI JuanJuan,ZHANG JunMei,CUI Yan,REN YouShe,ZHANG ChunXiang. Expression and Localization of LCN5 in Ram Reproductive Organs and Spermatozoa[J]. Scientia Agricultura Sinica, 2022, 55(7): 1445-1457.
表1
附睾不同区段、输精管及精液中精子的运动学参数"
组别 Group | A percent (%) | C percent (%) | D percent (%) | VAP (μm·s-1) | VSL (μm·s-1) | VCL (μm·s-1) | ALH (μm) | BCF (Hz) | WOB (%) | LIN (%) | STR (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
ED | 0.86± 0.27d | 8.24± 1.94c | 90.91± 5.92a | 14.05± 1.18e | 5.97± 0.46e | 25.27± 3.98c | 1.04± 0.23c | 0.97± 0.36d | 46.71± 9.63e | 21.64± 5.52d | 40.80± 6.57c |
E1 | 0.97± 0.45d | 18.14± 2.78a | 79.22± 9.98b | 14.19± 2.6e | 7.36± 1.04de | 29.27± 4.85c | 1.09± 0.36c | 1.57± 0.59cd | 59.07± 9.03bcde | 33.25± 5.23bcd | 54.14± 7.63b |
E2 | 1.52± 0.63d | 11.64± 3.1abc | 86.88± 12.92ab | 17.64± 2.86de | 9.53± 1.27de | 33.79± 3.82bc | 2.08± 0.70b | 2.56± 0.78bcd | 57.58± 7.54cde | 33.68± 5.95bcd | 55.74± 6.86bcd |
E3 | 2.12± 0.44d | 10.27± 1.50abc | 87.60± 4.69ab | 19.33± 2.26de | 10.10± 2.64de | 40.31± 4.48bc | 1.59± 0.46bc | 2.32± 0.75bcd | 51.61± 9.59d | 34.12± 6.13bcd | 53.40± 4.88b |
E4 | 1.87± 0.32d | 18.34± 3.13a | 79.78± 7.06b | 18.93± 2.70de | 13.19± 2.50de | 30.06± 8.9c | 1.68± 0.54bc | 3.19± 1.25bc | 56.30± 7.18de | 43.49± 8.54abc | 62.53± 9.59ab |
E5 | 6.22± 1.65d | 10.01± 2.62abc | 83.76± 7.38ab | 26.13± 4.75d | 15.60± 1.85d | 46.89± 3.6b | 2.09± 0.29b | 4.58± 2.48b | 55.27± 9.40de | 32.64± 5.20cd | 56.41± 5.91b |
E6 | 64.55± 9.39b | 17.72± 3.47ab | 14.72± 5.98d | 60.55± 8.33b | 46.13± 6.46b | 99.62± 9.86a | 3.83± 0.26a | 8.48± 1.10a | 62.81± 6.18abc | 45.65± 5.39a | 72.26± 5.42a |
E7 | 67.13± 3.10b | 12.38± 1.99abc | 20.48± 5.61d | 72.18± 4.97a | 54.16± 6.63ab | 101.8± 9.86a | 3.58± 0.19a | 8.40± 0.98a | 69.65± 7.42ab | 52.03± 6.21a | 74.28± 5.42a |
VS | 43.41± 7.99c | 13.50± 2.40 abc | 43.09± 9.15c | 46.27± 3.76c | 29.58± 5.20c | 89.42± 11.67a | 3.76± 0.54a | 9.80± 1.65a | 51.60± 5.03d | 32.52± 5.16cd | 62.27± 7.05ab |
ES | 76.79± 4.88a | 8.60± 1.5bc | 14.88± 5.35d | 74.24± 9.91a | 55.27± 7.38a | 100.6± 15.37a | 3.77± 0.35a | 8.83± 1.06a | 73.25± 6.07a | 54.52± 6.44a | 74.29± 4.18a |
[1] |
JOHNSTON D S, JELINSKY S A, BANG H J, DICANDELORO P, WILSON E, KOPF G S, TURNER T T. The mouse epididymal transcriptome: transcriptional profiling of segmental gene expression in the epididymis. Biology of Reproduction, 2005, 73(3):404-413. doi: 10.1095/biolreprod.105.039719.
doi: 10.1095/biolreprod.105.039719 |
[2] |
DACHEUX J L, CASTELLA S, GATTI J L, DACHEUX F. Epididymal cell secretory activities and the role of proteins in boar sperm maturation. Theriogenology, 2005, 63(2):319-341. doi: 10.1016/j.theriogenology.2004.09.015.
doi: 10.1016/j.theriogenology.2004.09.015 |
[3] |
GONZÁLEZ-CADAVID V, MARTINS J A, MORENO F B, ANDRADE T S, SANTOS A C, MONTEIRO-MOREIRA A C, MOREIRA R A, MOURA A A. Seminal plasma proteins of adult boars and correlations with sperm parameters. Theriogenology, 2014, 82(5):697-707. doi: 10.1016/j.theriogenology.2014.05.024.
doi: 10.1016/j.theriogenology.2014.05.024 |
[4] |
WESTFALEWICZ B, DIETRICH M A, MOSTEK A, PARTYKA A, BIELAS W, NIŻAŃSKI W, CIERESZKO A. Identification and functional analysis of bull (Bos taurus) cauda epididymal fluid proteome. Journal of Dairy Science, 2017, 100(8):6707-6719. doi: 10.3168/jds.2016-12526.
doi: 10.3168/jds.2016-12526 |
[5] |
FLOWER D R, SKERRA A. The Lipocalin Protein Family. The Biochemical Journal, 1996, 318(Pt1):1-14.
doi: 10.1042/bj3180001 |
[6] |
ZHOU W, STANGER S J, ANDERSON A L, BERNSTEIN I R, DE IULIIS G N, MCCLUSKEY A, MCLAUGHLIN E A, DUN M D, NIXON B. Mechanisms of tethering and cargo transfer during epididymosome-sperm interactions. BMC Biology, 2019, 17(1):35. doi: 10.1186/s12915-019-0653-5.
doi: 10.1186/s12915-019-0653-5 |
[7] |
JELINSKY S A, TURNER T T, BANG H J, FINGER J N, SOLARZ M K, WILSON E, BROWN E L, KOPF G S, JOHNSTON D S. The rat epididymal transcriptome: comparison of segmental gene expression in the rat and mouse epididymides. Biology of Reproduction, 2007, 76(4):561-570. doi: 10.1095/biolreprod.106.057323.
doi: 10.1095/biolreprod.106.057323 |
[8] |
CORNWALL G A. New insights into epididymal biology and function. Human Reproduction Update, 2009, 15(2):213-227. doi: 10.1093/humupd/dmn055.
doi: 10.1093/humupd/dmn055 |
[9] |
DACHEUX J L, DACHEUX F. New insights into epididymal function in relation to sperm maturation. Reproduction (Cambridge, England), 2014, 147(2):R27-R42. doi: 10.1530/rep-13-0420.
doi: 10.1530/rep-13-0420 |
[10] |
NEWCOMER M E. Structure of the epididymal retinoic acid binding protein at 2.1 A resolution. Journal of Clinical Medicine, 1993, 1(1):7-18. doi: 10.1016/0969-2126(93)90004-z.
doi: 10.1016/0969-2126(93)90004-z |
[11] |
SUZUKI K, YU X, CHAURAND P, ARAKI Y, LAREYRE J J, CAPRIOLI R M, MATUSIK R J, ORGEBIN-CRIST M C. Epididymis-specific promoter-driven gene targeting: A transcription factor which regulates epididymis-specific gene expression. Molecular of Cell Endocrinology, 2006, 250(1/2):184-189.
doi: 10.1016/j.mce.2005.12.043 |
[12] |
RANKIN T L, ONG D E, ORGEBIN-CRIST M C. The 18-kDa mouse epididymal protein (MEP 10) binds retinoic acid. Avian Diseases, 1992, 46(5):767-771. doi: 10.1095/biolreprod46.5.767.
doi: 10.1095/biolreprod46.5.767 |
[13] |
SUZUKI K, YU X, CHAURAND P, ARAKI Y, LAREYRE J J, CAPRIOLI R M, ORGEBIN-CRIST M C, MATUSIK R J. Epididymis-specific lipocalin promoters. Asian Journal of Andrology, 2007, 9(4):515-521. doi: 10.1111/j.1745-7262.2007.00300.x.
doi: 10.1111/j.1745-7262.2007.00300.x |
[14] |
XIE S, XU J, MA W, LIU Q, HAN J, YAO G, HUANG X, ZHANG Y. Lcn5 promoter directs the region-specific expression of cre recombinase in caput epididymidis of transgenic mice. Biology of Reproduction, 2013, 88(3):71. doi: 10.1095/biolreprod.112.104034.
doi: 10.1095/biolreprod.112.104034 |
[15] |
ZWAIN I H, GRIMA J, CHENG C Y. Rat epididymal retinoic acid-binding protein: development of a radioimmunoassay, its tissue distribution, and its changes in selected androgen-dependent organs after orchiectomy. BJOG, 1992, 131(3):1511-1526. doi: 10.1210/endo.131.3.1324164.
doi: 10.1210/endo.131.3.1324164 |
[16] |
CHARKOFTAKI G, WANG Y, MCANDREWS M, BRUFORD E A, THOMPSON D C, VASILIOU V, NEBERT D W. Update on the human and mouse lipocalin (LCN) gene family, including evidence the mouse Mup cluster is result of an “evolutionary bloom”. Human Genomics, 2019, 13(1):11. doi: 10.1186/s40246-019-0191-9.
doi: 10.1186/s40246-019-0191-9 |
[17] |
ZHANG Y R, ZHAO Y Q, HUANG J F. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways. PLoS ONE, 2012, 7(5):e36772. doi: 10.1371/journal.pone.0036772.
doi: 10.1371/journal.pone.0036772 |
[18] | HALL J C, TUBBS C E. Quantification of epididymal retinoic acid- binding protein (ERABP) mRNA in different anatomical regions of the adult rat epididymis. Biochemistry Molecular Biology Internation, 2010, 42(4):833-841. |
[19] |
WEBER A, ARGENTI L E, DE SOUZA A P B, SANTI L, BEYS-DA-SILVA W O, YATES J R, BUSTAMANTE-FILHO I C. Ready for the journey: A comparative proteome profiling of porcine cauda epididymal fluid and spermatozoa. Cell and Tissue Research, 2020, 379(2):389-405. doi: 10.1007/s00441-019-03080-0.
doi: 10.1007/s00441-019-03080-0 |
[20] |
MARTÍNEZ-FRESNEDA L, SYLVESTER M, SHAKERI F, BUNES A, DEL POZO J C, GARCÍA-VÁZQUEZ F A, NEUHOFF C, TESFAYE D, SCHELLANDER K, SANTIAGO-MORENO J. Differential proteome between ejaculate and epididymal sperm represents a key factor for sperm freezability in wild small ruminants. Cryobiology, 2021, 99:64-77. doi: 10.1016/j.cryobiol.2021.01.012.
doi: 10.1016/j.cryobiol.2021.01.012 |
[21] |
VAN TILBURG M, SOUSA S, LOBO M D P, MONTEIRO- AZEVEDO A C O M, AZEVEDO R A, ARAÚJO A A, MOURA A A. Mapping the major proteome of reproductive fluids and sperm membranes of rams: from the cauda epididymis to ejaculation. Theriogenology, 2021, 159:98-107. doi: 10.1016/j.theriogenology.2020.10.003.
doi: 10.1016/j.theriogenology.2020.10.003 |
[22] |
张春香, 张国林, 郭丽娜, 赵辉, 任有蛇. 基于高通量转录组测序的山羊睾丸和附睾头差异表达基因分析. 畜牧兽医学报, 2014, 45(3):391-401. doi: 10.11843/j.issn.0366-6964.2014.03.008.
doi: 10.11843/j.issn.0366-6964.2014.03.008 |
ZHANG C X, ZHANG G L, GUO L N, ZHAO H, REN Y S. Study on differentially expressed genes between caprine testis and epididymis caput based on transcriptomes with high-throughput RNA-seq technology. Acta Veterinaria et Zootechnica Sinica, 2014, 45(3):391-401. doi: 10.11843/j.issn.0366-6964.2014.03.008. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2014.03.008 |
|
[23] |
任有蛇, 郭丽娜, 张春香, 张国林, 夏龙钢, 乔利英, 靳黎, 刘文忠. 山羊Lcn 5的表达特点及其在繁殖器官中定位. 畜牧兽医学报, 2015, 46(5):711-718. doi: 10.11843/j.issn.0366-6964.2015.05.005.
doi: 10.11843/j.issn.0366-6964.2015.05.005 |
REN Y S, GUO L N, ZHANG C X, ZHANG G L, XIA L G, QIAO L Y, JIN L, LIU W Z. Expression characteristics of Lcn 5 and its localization in reproduction organ of Bucks. Acta Veterinaria et Zootechnica Sinica, 2015, 46(5):711-718. doi: 10.11843/j.issn.0366- 6964.2015.05.005. (in Chinese)
doi: 10.11843/j.issn.0366-6964.2015.05.005 |
|
[24] | 董复成, 崔岩, 任有蛇, 张春香. 太行山羊附睾头细胞Lcn5免疫荧光定位. 中国草食动物科学, 2020(6):1-5. |
DONG F C, CUI Y, REN Y S, ZHANG C X. Localization of Lcn5 in epididymal caput cells in vitro of Taihang goat. China Herbivore Science, 2020(6):1-5. (in Chinese) | |
[25] | 张彩霞. Lcn5对山羊精子获能和运动能力的影响[D]. 太谷:山西农业大学, 2016. |
ZHANG C X. Effects of Lcn5 on sperm capacitation and motility in goats. Taigu: Shanxi Agricultural Aniversity, 2016. (in Chinese) | |
[26] |
MAJUMDER G C. Occurrence of a cyclic AMP-dependent protein kinase on the outer surface of rat epididymal spermatozoa. Journal of Diabetes Science and Technology, 1978, 83(3):829-836. doi: 10.1016/0006-291x(78)91469-9.
doi: 10.1016/0006-291x(78)91469-9 |
[27] |
AMANN R P, HAY S R, HAMMERSTEDT R H. Yield, characteristics, motility and cAMP content of sperm isolated from seven regions of ram epididymis. American Journal of Cancer Research, 1982, 27(3):723-733. doi: 10.1095/biolreprod27.3.723.
doi: 10.1095/biolreprod27.3.723 |
[28] |
MIRó J, LOBO V, QUINTERO-MORENO A, MEDRANO A, PE A A, RIGAU T. Sperm motility patterns and metabolism in Catalonian donkey semen. Theriogenology, 2005, 63(6):1706-1716.
doi: 10.1016/j.theriogenology.2004.07.022 |
[29] |
DORADO J, RODRíGUEZ I, HIDALGO M. Cryopreservation of goat spermatozoa: Comparison of two freezing extenders based on post-thaw sperm quality and fertility rates after artificial insemination. Theriogenology, 2007, 68(2):168-177.
doi: 10.1016/j.theriogenology.2007.04.048 |
[30] | DEMYDA-PEYRáS S, BOTTREL M, ACHA D, ORTIZ I, DORADO J. Effect of cooling rate on sperm quality of cryopreserved Andalusian donkey spermatozoa. Animal Reproduction Science, 2018, 193. |
[31] |
TOSHIMORI K. Biology of spermatozoa maturation: an overview with an introduction to this issue. Microscopy Research and Technique, 2003, 61(1):1-6. doi: 10.1002/jemt.10311.
doi: 10.1002/jemt.10311 |
[32] |
YANAGIMACHI R, NODA Y D, FUJIMOTO M, NICOLSON G L. The distribution of negative surface charges on mammalian spermatozoa. Australian Prescriber, 1972, 135(4):497-519. doi: 10.1002/aja.1001350405.
doi: 10.1002/aja.1001350405 |
[33] | ROBAIRE B, HERMO L. Efferent ducts, epididymis, and Vas deferens: Structure, functions, and their regulation. The Physiology of Reproduction, 1988: 999-1080. |
[34] |
TOHIDNEZHAD M, VAROGA D, PODSCHUN R, WRUCK C J, SEEKAMP A, BRANDENBURG L O, PUFE T, LIPPROSS S. Thrombocytes are effectors of the innate immune system releasing human beta defensin-3. Injury, 2011, 42(7):682-686. doi: 10.1016/j.injury.2010.12.010.
doi: 10.1016/j.injury.2010.12.010 |
[35] |
BELLEANNÉE C, LABAS V, TEIXEIRA-GOMES A P, GATTI J L, DACHEUX J L, DACHEUX F. Identification of luminal and secreted proteins in bull epididymis. Journal of Proteomics, 2011, 74(1):59-78. doi: 10.1016/j.jprot.2010.07.013.
doi: 10.1016/j.jprot.2010.07.013 |
[36] |
GUYONNET B, MAROT G, DACHEUX J L, MERCAT M J, SCHWOB S, JAFFRÉZIC F, GATTI J L. The adult boar testicular and epididymal transcriptomes. BMC Genomics, 2009, 10:369. doi: 10.1186/1471-2164-10-369.
doi: 10.1186/1471-2164-10-369 |
[37] |
TURNER T T, BOMGARDNER D, JACOBS J P. Sonic hedgehog pathway genes are expressed and transcribed in the adult mouse epididymis. Journal of Andrology, 2004, 25(4):514-522. doi: 10.1002/j.1939-4640.2004.tb02822.x.
doi: 10.1002/j.1939-4640.2004.tb02822.x |
[38] |
JOHNSTON D S, JELINSKY S A, BANG H J, DICANDELORO P, WILSON E, KOPF G S, TURNER T T. The mouse epididymal transcriptome: transcriptional profiling of segmental gene expression in the epididymis. Biology of Reproduction, 2005, 73(3):404-413. doi: 10.1095/biolreprod.105.039719.
doi: 10.1095/biolreprod.105.039719 |
[39] |
JELINSKY S A, TURNER T T, BANG H J, FINGER J N, SOLARZ M K, WILSON E, BROWN E L, KOPF G S, JOHNSTON D S. The rat epididymal transcriptome: Comparison of segmental gene expression in the rat and mouse epididymides. Biology of Reproduction, 2007, 76(4):561-570. doi: 10.1095/biolreprod.106.057323.
doi: 10.1095/biolreprod.106.057323 |
[40] |
TURNER T T, JOHNSTON D S, FINGER J N, JELINSKY S A. Differential gene expression among the proximal segments of the rat epididymis is lost after efferent duct ligation. Biology of Reproduction, 2007, 77(1):165-171. doi: 10.1095/biolreprod.106.059493.
doi: 10.1095/biolreprod.106.059493 |
[41] | 赵翊林, 孟繁荣, 张春香, 任有蛇. 成年公山羊脂质运载蛋白8基因的组织表达谱分析. 中国草食动物科学, 2020, 40(1):1-4. |
ZHAO Y L, MENG F R, ZHANG C X, REN Y S. Expression profiles of Lcn8 in the organs and tissues of adult male goat. China Herbivore Science, 2020, 40(1):1-4. (in Chinese) | |
[42] |
张昱, 孟繁荣, 任有蛇, 张春香. β防御素126在成年公山羊组织中的表达特性. 中国草食动物科学, 2019, 39(6):12-15. doi: 10.3969/j.issn.2095-3887.2019.06.003.
doi: 10.3969/j.issn.2095-3887.2019.06.003 |
ZHANG Y, MENG F R, REN Y S, ZHANG C X. Expression profile of β-defensin126 mRNA in various tissues of adult male goat. China Herbivore Science, 2019, 39(6):12-15. doi: 10.3969/j.issn.2095-3887.2019.06.003. (in Chinese)
doi: 10.3969/j.issn.2095-3887.2019.06.003 |
|
[43] | 杜海燕. 山羊附睾头β防御素家族表达特点及gBD 124功能分析[D]. 山西农业大学, 2018. |
DU H Y. The expression characteristics of β-defensin family from caprine epididymis and function analysis of gBD124. Taigu: Shanxi Agricultural Aniversity, 2018. (in Chinese) | |
[44] |
MARCHESE S, PES D, SCALONI A, CARBONE V, PELOSI P. Lipocalins of boar salivary glands binding odours and pheromones. European Journal of Biochemistry, 1998, 252(3):563-568. doi: 10.1046/j.1432-1327.1998.2520563.x.
doi: 10.1046/j.1432-1327.1998.2520563.x |
[45] |
CHAURAND P, FOUCHÉCOURT S, DAGUE B B, XU B J, REYZER M L, ORGEBIN-CRIST M C, CAPRIOLI R M. Profiling and imaging proteins in the mouse epididymis by imaging mass spectrometry. Proteomics, 2003, 3(11):2221-2239. doi: 10.1002/pmic.200300474.
doi: 10.1002/pmic.200300474 |
[46] |
TOLLNER T L, BEVINS C L, CHERR G N. Multifunctional glycoprotein DEFB126: A curious story of defensin-clad spermatozoa. Nature Reviews Urology, 2012, 9(7):365-375. doi: 10.1038/nrurol.2012.109.
doi: 10.1038/nrurol.2012.109 |
[47] |
YUDIN A I, TOLLNER T L, LI M W, TREECE C A, CHERR G N. ESP13.2, a member of the -Defensin family, Is a Macaque sperm surface-coating protein involved in the capacitation process. Biology of Reproduction, 2003, 69(4):1118-1128.
doi: 10.1095/biolreprod.103.016105 |
[48] |
PÉREZ-PATIÑO C, PARRILLA I, LI J, BARRANCO I, MARTÍNEZ E A, RODRIGUEZ-MARTÍNEZ H, ROCA J. The proteome of pig spermatozoa is remodeled during ejaculation. Molecular & Cellular Proteomics, 2019, 18(1):41-50. doi: 10.1074/mcp.ra118.000840.
doi: 10.1074/mcp.ra118.000840 |
[49] |
HAO S L, NI F D, YANG W X. The dynamics and regulation of chromatin remodeling during spermiogenesis. Gene, 2019, 706:201-210. doi: 10.1016/j.gene.2019.05.027.
doi: 10.1016/j.gene.2019.05.027 |
[50] |
MARTÍNEZ-FRESNEDA L, CASTAÑO C, BÓVEDA P, TESFAYE D, SCHELLANDER K, SANTIAGO-MORENO J, GARCÍA-VÁZQUEZ F A. Epididymal and ejaculated sperm differ on their response to the cryopreservation and capacitation processes in mouflon (Ovis musimon). Scientific Reports, 2019, 9(1):15659. doi: 10.1038/s41598-019-52057-0.
doi: 10.1038/s41598-019-52057-0 |
[51] |
LAREYRE J J, WINFREY V P, KASPER S, ONG D E, MATUSIK R J, OLSON G E, ORGEBIN-CRIST M C. Gene duplication gives rise to a new 17-kilodalton lipocalin that shows epididymal region-specific expression and testicular factor(s) regulation. Endocrinology, 2001, 142(3):1296-1308. doi: 10.1210/endo.142.3.8045.
doi: 10.1210/endo.142.3.8045 |
[52] |
COSTA S L, BOEKELHEIDE K, VANDERHYDEN B C, SETH R, MCBURNEY M W. Male infertility caused by epididymal dysfunction in transgenic mice expressing a dominant negative mutation of retinoic acid receptor alpha 1. Biology of Reproduction, 1997, 56(4):985-990. doi: 10.1095/biolreprod56.4.985.
doi: 10.1095/biolreprod56.4.985 |
[53] |
LEE Y C, LIAO C J, LI P T, TZENG W F, CHU S T. Mouse lipocalin as an enhancer of spermatozoa motility. Molecular Biology Reports, 2003, 30(3):165-172. doi: 10.1023/A:1024985024661.
doi: 10.1023/A:1024985024661 |
[54] |
BEZERRA M J B, ARRUDA-ALENCAR J M, MARTINS J A M, VIANA A G A, VIANA NETO A M, RÊGO J P A, OLIVEIRA R V, LOBO M, MOREIRA A C O, MOREIRA R A, MOURA A A. Major seminal plasma proteome of rabbits and associations with sperm quality. Theriogenology, 2019, 128:156-166. doi: 10.1016/j.theriogenology.2019.01.013.
doi: 10.1016/j.theriogenology.2019.01.013 |
[55] |
NIEDERREITHER K, SUBBARAYAN V, DOLLÉ P, CHAMBON P. Embryonic retinoic acid synthesis is essential for early mouse post- implantation development. Nature Genetics, 1999, 21(4):444-448. doi: 10.1038/7788.
doi: 10.1038/7788 |
[56] |
RAMOS A S. Morphologic variations along the length of the monkey vas deferens. Environmental Pollution. Journal of Reproductive Systems, 1979, 3(3):187-196. doi: 10.3109/01485017908988404.
doi: 10.3109/01485017908988404 |
[57] | RIVA A, AüMULLER G. Epithelium of the Distal Portion of the Human Spermatic Pathway: Seminal Vesicle, Ampulla Ductus Deferentis, and Ejaculatory Duct. City: Ultrastructure of the Male Urogenital Glands, 1994. |
[58] | ROMAS A S. Ultra-structural variations and phagocytosis of spermatozoa in the epithelium of the monkey vas deferens. Biology of Reproduction, 1979, 20:61A. |
[59] |
SNYDER E M, SMALL C L, BOMGARDNER D, XU B, EVANOFF R, GRISWOLD M D, HINTON B T. Gene expression in the efferent ducts, epididymis, and vas deferens during embryonic development of the mouse. Developmental Dynamics, 2010, 239(9):2479-2491.
doi: 10.1002/dvdy.22378 |
[60] |
SELDIN M M, KOPLEV S, RAJBHANDARI P, VERGNES L, ROSENBERG G M, MENG Y, PAN C, PHUONG T M N, GHARAKHANIAN R, CHE N, MÄKINEN S, SHIH D M, CIVELEK M, PARKS B W, KIM E D, NORHEIM F, CHELLA KRISHNAN K, HASIN-BRUMSHTEIN Y, MEHRABIAN M, LAAKSO M, DREVON C A, KOISTINEN H A, TONTONOZ P, REUE K, CANTOR R M, BJÖRKEGREN J L M, LUSIS A J. A strategy for discovery of endocrine interactions with application to whole-body metabolism. Cell Metabolism, 2018, 27(5):1138-1155. doi: 10.1016/j.cmet.2018.03.015.
doi: 10.1016/j.cmet.2018.03.015 |
No related articles found! |
|