[1] OAKENFULL D, PEARCE J, BURLEY R W. Protein Gelation: Food Proteins and Their Applications. New York: Marcel Dekker, 1997.
[2] ZHANG Z Y, YANG Y L, TANG X Z, CHEN Y J, YOU Y. Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure. Food Chemistry, 2015, 188: 111-118.
[3] LIU K S, HSIEH F H. Protein–protein interactions in high moisture-extruded meat analogs and heat-induced soy protein gels. Journal of the American Oil Chemists' Society, 2007, 84(8): 741-748.
[4] HUNTER R J. Zeta Potential in Colloid Science: Principles and Applications. New York/London: Academic Press, 2013.
[5] RUNKANA V, SOMASUNDARAN P, KAPUR P C. Mathematical modeling of polymer-induced flocculation by charge neutralization. Journal of Colloid and Interface Science, 2004, 270(2): 347-358.
[6] NONAKA M, LI-CHAN E, NAKAI S. Raman spectroscopic study of thermally induced gelation of whey proteins. Journal of Agricultural and Food Chemistry, 1993, 41(8): 1176-1181.
[7] IKEDA S, LI-CHAN E C Y. Raman spectroscopy of heat-induced fine-stranded and particulate β-lactoglobulin gels. Food Hydrocolloids, 2004, 18(3): 489-498.
[8] LINLAUD N, FERRER E, PUPPO M C, FERRERO C. Hydrocolloid interaction with water, protein, and starch in wheat dough. Journal of Agricultural and Food Chemistry, 2010, 59(2): 713-719.
[9] 耿信笃, 白泉, 王超展. 蛋白折叠液相色谱法. 北京: 科学出版社, 2006.
GENG X D, BAI Q, WANG C Z. Protein Folding Liquid Chromatography. Beijing: Science Press, 2006. (in Chinese)
[10] ALIX A J P, PEDANOU G, BERJOT M. Fast determination of the quantitative secondary structure of proteins by using some parameters of the Raman amide I band. Journal of Molecular Structure, 1988, 174: 159-164.
[11] CHOI S M, MA C Y. Structural characterization of globulin from common buckwheat (Fagopyrum esculentum Moench) using circular dichroism and Raman spectroscopy. Food Chemistry, 2007, 102(1): 150-160.
[12] LI-Chan E C Y. The applications of Raman spectroscopy in food science. Trends in Food Science & Technology, 1996, 7(11): 361-370.
[13] ZHANG Z Y, YANG Y L, TANG X Z, CHEN Y J, YOU Y. Effects of ionic strength on chemical forces and functional properties of heat-induced myofibrillar protein gel. Food Science and Technology Research, 2015, 21(4): 597-605.
[14] LI K, KANG Z L, ZHAO Y Y, XU X L, ZHOU G H. Use of high-intensity ultrasound to improve functional properties of batter suspensions prepared from PSE-like chicken breast meat. Food and Bioprocess Technology, 2014, 7(12): 3466-3477.
[15] BERTRAM H C, KRISTENSEN M, ANDERSEN H J. Functionality of myofibrillar proteins as affected by pH, ionic strength and heat treatment–a low-field NMR study. Meat Science, 2004, 68(2): 249-256.
[16] 费英, 韩敏义, 杨凌寒, 周光宏, 徐幸莲, 彭增起. pH对肌原纤维蛋白二级结构及其热诱导凝胶特性的影响. 中国农业科学, 2010, 43(1): 164-170.
FEI Y, HAN M Y, YANG L H, ZHOU G H, XU X L, PENG Z Q. Studies on the secondary structure and heat-induced gelation of pork myofibrillar proteins as affected by pH. Scientia Agricultura Sinica, 2010, 43(1):164-170. (in Chinese)
[17] SUREL O, FAMELART M H. Heat induced gelation of acid milk: balance between weak and covalent bonds. Journal of dairy research, 2003, 70(2): 253-256.
[18] 韩敏义, 费英, 徐幸莲, 周光宏. 低场 NMR 研究 pH 对肌原纤维蛋白热诱导凝胶的影响. 中国农业科学, 2009, 42(6): 2098-2104.
HAN M Y, FEI Y, XU X L, ZHOU G H. Heat-induced gelation of myofibrillar proteins as affected by pH-a low field NMR study. Scientia Agricultura Sinica, 2009, 42(6): 2098-2104. (in Chinese)
[19] DAMODARAN S. 5 Amino acids, peptides, and proteins//Fennema's food chemistry. CRC press, 2008: 217.
[20] SATOH Y, NAKAYA M, OCHIAI Y, WATABE S. Characterization of fast skeletal myosin from white croaker in comparison with that from walleye pollack. Fisheries Science, 2006, 72(3): 646-655.
[21] DUMETZ A C, CHOCKLA A M, KALER E W, LENHOFF A M. Effects of pH on protein–protein interactions and implications for protein phase behavior. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2008, 1784(4): 600-610.
[22] LIU R, ZHAO S M, XIONG S B, XIE B J, QIN L H. Role of secondary structures in the gelation of porcine myosin at different pH values. Meat Science, 2008, 80(3): 632-639.
[23] CHAN J K, GILL T A, PAULSON A T. The dynamics of thermal denaturation of fish myosins. Food Research International, 1992, 25(2): 117-123.
[24] LIU R, ZHAO S M, LIU Y M, YANG H, XIONG S B, XIE B J, QIN L H. Effect of pH on the gel properties and secondary structure of fish myosin. Food Chemistry, 2010, 121(1): 196-202.
[25] 杨玉玲, 游远, 彭晓蓓, 陈银基. 加热对鸡胸肉肌原纤维蛋白结构与凝胶特性的影响. 中国农业科学, 2014, 47(10): 2013-2020.
YANG Y L, YOU Y, PENG X B, CHEN Y J. Influence of heating on structure and gel properties of myofibrillar proteins from chicken breast muscle. Scientia Agricultura Sinica, 2014, 47(10): 2013-2020. (in Chinese)
[26] BOYE J I, ALLI I, ISMAIL A A, GIBBS B F, KONISHI Y. Factors affecting molecular characteristics of whey protein gelation. International Dairy Journal, 1995, 5(4): 337-353.
[27] PROMEYRAT A, GATELLIER P, LEBRET B, KAJAK- SIEMASZKO K, AUBRY L, SANTE-LHOUTELLIER V. Evaluation of protein aggregation in cooked meat. Food Chemistry, 2010, 121(2): 412-417.
[28] HERMANSSON A M. Aggregation and Denaturation Involved In Gel Formation: Functionality and Protein Structure. Washington DC: American Chemical Society. 1979.
[29] HAMADA M, ISHIZAKI S, NAGAI T. Variation of SH content and kamaboko-gel forming ability of shark muscle protein by electrolysis. Journal of the Shimonoseki University of Fisheries, 1994, 42: 131-135.
[30] KER Y C, TOLEDO R T. Influence of shear treatments on consistency and gelling properties of whey protein isolate suspensions. Journal of Food Science, 1992, 57(1): 82-85.
[31] WANG S F, SMITH D M. Dynamic rheological properties and secondary structure of chicken breast myosin as influenced by isothermal heating. Journal of Agricultural and Food Chemistry, 1994, 42(7): 1434-1439.
[32] WANG C H, DAMODARAN S. Thermal gelation of globular proteins: influence of protein conformation on gel strength. Journal of Agricultural and Food Chemistry, 1991, 39(3): 433-438.
[33] 曹锦轩, 张玉林, 韩敏义, 蒋亚婷, 潘道东, 欧昌荣. 腊肉加工过程中肌原纤维蛋白结构的变化. 中国农业科学, 2013, 46(18): 3871-3877.
CAO J X, ZHANG Y L, HAN M Y, JIANG Y T, PAN D D, OU C R. Changes of the construction of myofibrillar proteins in Chinese traditional bacon during processing. Scientia Agricultura Sinica, 2013, 46(18): 3871-3877. (in Chinese)
[34] LEFEVRE F, FAUCONNEAU B, OUALI A, CULIOLI J. Thermal gelation of brown trout myofibrils from white and red muscles: effect of pH and ionic strength. Journal of the Science of Food and Agriculture, 2002, 82(4): 452-463. |