[1] 徐盛玉, 吴德, 王定越. 卵母细胞质量评定方法. 中国生物工程杂志, 2008, 28(7):116-121.
Xu S Y, Wu D, Wang D Y. The review of assessment of oocyte quality. China Biotechnology, 2008, 28(7): 116-121. (in Chinese)
[2] Zheng P, Schramm R D, Latham K E. Developmental regulation and in vitro culture effects on expression of DNA repair and cell cycle checkpoint control genes in rhesus monkey oocytes and embryos. Biology of Reproduction, 2005, 72(6):1359-1369.
[3] Sutton-McDowall M L, Gilchrist R B, Thompson J G. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction, 2010, 139(4):685-695.
[4] Spindel O N, World C, Berk B C. Thioredoxin interacting protein: redox dependent and independent regulatory mechanisms. Antioxidants & Redox Signaling, 2012, 16(6):587-596.
[5] Chen K S, DeLuca H F. Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3. Biochimica et Biophysica Acta, 1994, 1219(1):26-32.
[6] Nishiyama A, Matsui M, Iwata S, Hirota K, Masutani H, Nakamura H, Takagi Y, Sono H, Gon Y, Yodoi J. Identification of thioredoxin- binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. The Journal of Biological Chemistry, 1999, 274(31):21645-21650.
[7] Yamanaka H, Maehira F, Oshiro M, Asato T, Yanagawa Y, Takei H, Nakashima Y. A possible interaction of thioredoxin with VDUP1 in HeLa cells detected in a yeast two-hybrid system. Biochemical and Biophysical Research Communications, 2000, 271(3):796-800.
[8] Takahashi Y, Nagata T, Ishii Y, Ikarashi M, Ishikawa K, Asai S. Up-regulation of vitamin D3 up-regulated protein 1 gene in response to 5-fluorouracil in colon carcinoma SW620. Oncology Reports, 2002, 9(1):75-79.
[9] Lee S, Kim S M, Lee R T. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxidants & Redox Signaling, 2013, 18(10):1165-1207.
[10] Ludwig D L, Kotanides H, Le T, Chavkin D, Bohlen P, Witte L. Cloning, genetic characterization, and chromosomal mapping of the mouse VDUP1 gene. Gene, 2001, 269(1-2):103-112.
[11] Shalev A. Minireview: Thioredoxin-interacting protein: regulation and function in the pancreatic beta-cell. Molecular Endocrinology, 2014, 28(8):1211-1220.
[12] Patwari P, Chutkow W A, Cummings K, Verstraeten V L, Lammerding J, Schreiter E R, Lee R T. Thioredoxin-independent regulation of metabolism by the alpha-arrestin proteins. The Journal of Biological Chemistry, 2009, 284(37):24996-25003.
[13] Shin D, Jeon J H, Jeong M, Suh H W, Kim S, Kim H C, Moon O S, Kim Y S, Chung J W, Yoon S R, Kim W H, Choi I. VDUP1 mediates nuclear export of HIF1alpha via CRM1-dependent pathway. Biochimica et Biophysica Acta, 2008, 1783(5):838-848.
[14] Patwari P, Higgins L J, Chutkow W A, Yoshioka J, Lee R T. The interaction of thioredoxin with Txnip. Evidence for formation of a mixed disulfide by disulfide exchange. The Journal of Biological Chemistry, 2006, 281(31):21884-21891.
[15] Hwang J, Suh H W, Jeon Y H, Hwang E, Nguyen L T, Yeom J, Lee S G, Lee C, Kim K J, Kang B S, Jeong J O, Oh T K, Choi I, Lee J O, Kim M H. The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein. Nature Communications, 2014, 5:2958.
[16] Lillig C H, Holmgren A. Thioredoxin and related molecules--from biology to health and disease. Antioxidants & Redox Signaling, 2007, 9(1):25-47.
[17] Saxena G, Chen J, Shalev A. Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. The Journal of Biological Chemistry, 2010, 285(6):3997-4005.
[18] Lu J, Holmgren A. Thioredoxin system in cell death progression. Antioxidants & Redox Signaling, 2012, 17(12):1738-1747.
[19] Yoshihara E, Masaki S, Matsuo Y, Chen Z, Tian H, Yodoi J. Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases. Frontiers in Immunology, 2014, 4:514.
[20] Yu Y, Xing K, Badamas R, Kuszynski C A, Wu H, Lou M F. Overexpression of thioredoxin-binding protein 2 increases oxidation sensitivity and apoptosis in human lens epithelial cells. Free Radical Biology and Medicine, 2013, 57:92-104.
[21] Forrester M T, Seth D, Hausladen A, Eyler C E, Foster M W, Matsumoto A, Benhar M, Marshall H E, Stamler J S. Thioredoxin- interacting protein (Txnip) is a feedback regulator of S-nitrosylation. The Journal of Biological Chemistry, 2009, 284(52):36160-36166.
[22] Ogata F T, Batista W L, Sartori A, Gesteira T F, Masutani H, Arai R J, Yodoi J, Stern A, Monteiro H P. Nitrosative/Oxidative Stress Conditions Regulate Thioredoxin-Interacting Protein (TXNIP) Expression and Thioredoxin-1 (TRX-1) Nuclear Localization. PLoS One, 2013, 8(12):e84588.
[23] Cha-Molstad H, Saxena G, Chen J, Shalev A. Glucose-stimulated expression of Txnip is mediated by carbohydrate response element- binding protein, p300, and histone H4 acetylation in pancreatic beta cells. The Journal of Biological Chemistry, 2009, 284(25): 16898-16905.
[24] Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K. Mechanism for fatty acid "sparing" effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. The Journal of Biological Chemistry, 2002, 277(6):3829-3835.
[25] Shaked M, Ketzinel-Gilad M, Cerasi E, Kaiser N, Leibowitz G. AMP-activated protein kinase (AMPK) mediates nutrient regulation of thioredoxin-interacting protein (TXNIP) in pancreatic beta-cells. PLoS One, 2011, 6(12):e28804.
[26] Chen J, Jing G, Xu G, Shalev A. Thioredoxin-interacting protein stimulates its own expression via a positive feedback loop. Molecular Endocrinology, 2014, 28(5):674-680.
[27] Sans C L, Satterwhite D J, Stoltzman C A, Breen K T, Ayer D E. MondoA-Mlx heterodimers are candidate sensors of cellular energy status: mitochondrial localization and direct regulation of glycolysis. Molecular and Cellular Biology, 2006, 26(13):4863-4871.
[28] Stoltzman C A, Peterson C W, Breen K T, Muoio D M, Billin A N, Ayer D E. Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(19):6912-6917.
[29] Han K S, Ayer D E. MondoA senses adenine nucleotides: transcriptional induction of thioredoxin-interacting protein. Biochemical Journal, 2013, 453(2):209-218.
[30] Kato T, Shimono Y, Hasegawa M, Jijiwa M, Enomoto A, Asai N, Murakumo Y, Takahashi M. Characterization of the HDAC1 complex that regulates the sensitivity of cancer cells to oxidative stress. Cancer Research, 2009, 69(8):3597-3604.
[31] Zhou J, Yu Q, Chng W J. TXNIP (VDUP-1, TBP-2): a major redox regulator commonly suppressed in cancer by epigenetic mechanisms. The International Journal of Biochemistry & Cell Biology, 2011, 43(12):1668-1673.
[32] Lee J H, Jeong E G, Choi M C, Kim S H, Park J H, Song S H, Park J, Bang Y J, Kim T Y. Inhibition of histone deacetylase 10 induces thioredoxin-interacting protein and causes accumulation of reactive oxygen species in SNU-620 human gastric cancer cells. Molecules and Cells, 2010, 30(2):107-112.
[33] Matsumoto M, Pocai A, Rossetti L, Depinho R A, Accili D. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metabolism, 2007, 6(3): 208-216.
[34] Kibbe C, Chen J, Xu G, Jing G, Shalev A. FOXO1 competes with carbohydrate response element-binding protein (ChREBP) and inhibits thioredoxin-interacting protein (TXNIP) transcription in pancreatic beta cells. The Journal of Biological Chemistry, 2013, 288(32):23194-23202.
[35] Han S H, Jeon J H, Ju H R, Jung U, Kim K Y, Yoo H S, Lee Y H, Song K S, Hwang H M, Na Y S, Yang Y, Lee K N, Choi I. VDUP1 upregulated by TGF-beta1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression. Oncogene, 2003, 22(26):4035-4046.
[36] Nishinaka Y, Nishiyama A, Masutani H, Oka S, Ahsan K M, Nakayama Y, Ishii Y, Nakamura H, Maeda M, Yodoi J. Loss of thioredoxin-binding protein-2/vitamin D3 up-regulated protein 1 in human T-cell leukemia virus type I-dependent T-cell transformation: implications for adult T-cell leukemia leukemogenesis. Cancer Research, 2004, 64(4):1287-1292.
[37] Jeon J H, Lee K N, Hwang C Y, Kwon K S, You K H, Choi I. Tumor suppressor VDUP1 increases p27(kip1) stability by inhibiting JAB1. Cancer Research, 2005, 65(11):4485-4489.
[38] Kwon H J, Won Y S, Suh H W, Jeon J H, Shao Y, Yoon S R, Chung J W, Kim T D, Kim H M, Nam K H, Yoon W K, Kim D G, Kim J H, Kim Y S, Kim D Y, Kim H C, Choi I. Vitamin D3 upregulated protein 1 suppresses TNF-alpha-induced NF-kappaB activation in hepatocarcinogenesis. Journal of Immunology, 2010, 185(7): 3980-3989.
[39] Jin H O, Seo S K, Kim Y S, Woo S H, Lee K H, Yi J Y, Lee S J, Choe T B, Lee J H, An S, Hong S I, Park I C. TXNIP potentiates Redd1-induced mTOR suppression through stabilization of Redd1. Oncogene, 2011, 30(35):3792-3801.
[40] Kaadige M R, Yang J, Wilde B R, Ayer D E. MondoA-Mlx transcriptional activity is limited by mTOR-MondoA interaction. Molecular and Cellular Biology, 2015, 35(1):101-110.
[41] Gilchrist R B, Ritter L J, Armstrong D T. Oocyte-somatic cell interactions during follicle development in mammals. Animal Reproduction Science, 2004, 82-83:431-446.
[42] Kim E, Seok H H, Lee S Y, Lee D R, Moon J, Yoon T K, Lee W S, Lee K A. Correlation between Expression of Glucose Transporters in Granulosa Cells and Oocyte Quality in Women with Polycystic Ovary Syndrome. Endocrinology and Metabolism, 2014, 29(1):40-47.
[43] Kumar P, Rajput S, Verma A, De S, Datta T K. Expression pattern of glucose metabolism genes in relation to development rate of buffalo (Bubalus bubalis) oocytes and in vitro-produced embryos. Theriogenology, 2013, 80(8):914-922.
[44] Wang Q, Chi M M, Schedl T, Moley K H. An intercellular pathway for glucose transport into mouse oocytes. American Journal of Physiology. Endocrinology and Metabolism, 2012, 302(12):E1511-1518.
[45] Wang Q, Chi M M, Moley K H. Live imaging reveals the link between decreased glucose uptake in ovarian cumulus cells and impaired oocyte quality in female diabetic mice. Endocrinology, 2012, 153(4):1984-1989.
[46] Collado-Fernandez E, Picton H M, Dumollard R. Metabolism throughout follicle and oocyte development in mammals. The International Journal of Developmental Biology, 2012, 56(10-12): 799-808.
[47] Cetica P, Pintos L, Dalvit G, Beconi M. Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro. Reproduction, 2002, 124(5):675-681.
[48] Kim Y, Kim E Y, Seo Y M, Yoon T K, Lee W S, Lee K A. Function of the pentose phosphate pathway and its key enzyme, transketolase, in the regulation of the meiotic cell cycle in oocytes. Clinical and Experimental Reproductive Medicine, 2012, 39(2):58-67.
[49] Ishizaki C, Watanabe H, Bhuiyan M M, Fukui Y. Developmental competence of porcine oocytes selected by brilliant cresyl blue and matured individually in a chemically defined culture medium. Theriogenology, 2009, 72(1):72-80.
[50] Absalon-Medina V A, Butler W R, Gilbert R O. Preimplantation embryo metabolism and culture systems: experience from domestic animals and clinical implications. Journal of Assisted Reproduction and Genetics, 2014, 31(4):393-409.
[51] Frank L A, Sutton-McDowall M L, Gilchrist R B, Thompson J G. The effect of peri-conception hyperglycaemia and the involvement of the hexosamine biosynthesis pathway in mediating oocyte and embryo developmental competence. Molecular Reproduction and Development, 2014, 81(5):391-408.
[52] Sutton-McDowall M L, Gilchrist R B, Thompson J G. Cumulus expansion and glucose utilisation by bovine cumulus-oocyte complexes during in vitro maturation: the influence of glucosamine and follicle-stimulating hormone. Reproduction, 2004, 128(3): 313-319.
[53] Frank L A, Sutton-McDowall M L, Brown H M, Russell D L, Gilchrist R B, Thompson J G. Hyperglycaemic conditions perturb mouse oocyte in vitro developmental competence via beta-O-linked glycosylation of heat shock protein 90. Human Reproduction, 2014, 29(6):1292-1303.
[54] Kaneko T, Iuchi Y, Takahashi M, Fujii J. Colocalization of polyol-metabolizing enzymes and immunological detection of fructated proteins in the female reproductive system of the rat. Histochemistry and Cell Biology, 2003, 119(4):309-315.
[55] Gu L, Liu H, Gu X, Boots C, Moley K H, Wang Q. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cellular and Molecular Life Sciences : CMLS, 2015, 72(2): 251-271.
[56] Minn A H, Hafele C, Shalev A. Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology, 2005, 146(5):2397-2405.
[57] Chen J, Saxena G, Mungrue I N, Lusis A J, Shalev A. Thioredoxin- interacting protein: a critical link between glucose toxicity and beta-cell apoptosis. Diabetes, 2008, 57(4):938-944.
[58] Chen J, Hui S T, Couto F M, Mungrue I N, Davis D B, Attie A D, Lusis A J, Davis R A, Shalev A. Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes. The FASEB Journal, 2008, 22(10): 3581-3594.
[59] 高海波, 李裕明, 李丽华, 刘志平, 陈璐璐. 硫氧环蛋白相互作用蛋白与糖尿病关系的研究. 华中科技大学学报: 医学版, 2009(5): 669-672.
Gao H B, Li Y M, Li L H, Liu Z P, Chen L L. Relationship between thioredoxin interacting protein and diabetes mellitus. Journal of Huazhong University of Science and Technology: Medicine, 2009(5): 669-672. (in Chinese)
[60] Xu G, Chen J, Jing G, Shalev A. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nature Medicine, 2013, 19(9):1141-1146.
[61] Jing G, Westwell-Roper C, Chen J, Xu G, Verchere C B, Shalev A. Thioredoxin-interacting protein promotes islet amyloid polypeptide expression through miR-124a and FoxA2. The Journal of Biological Chemistry, 2014, 289(17):11807-11815.
[62] 焦铭, 李笔, 陶敏, 黄俊潮. 胰岛淀粉样多肽诱导β细胞凋亡机制的研究进展. 生命科学, 2014, (3):302-308.
Jiao M, Li B, Tao M, Huang J C. Progress on the mechanism of β-cell apoptosis induced by islet amyloid polypeptide. Chinese Bulletin of Life Sciences, 2014, (3): 302-308. (in Chinese)
[63] Chang A S, Dale A N, Moley K H. Maternal diabetes adversely affects preovulatory oocyte maturation, development, and granulosa cell apoptosis. Endocrinology, 2005, 146(5):2445-2453.
[64] Wang Q, Ratchford A M, Chi M M, Schoeller E, Frolova A, Schedl T, Moley K H. Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes. Molecular Endocrinology, 2009, 23(10):1603-1612.
[65] Wang Q, Moley K H. Maternal diabetes and oocyte quality. Mitochondrion, 2010, 10(5):403-410.
[66] Zhang C H, Qian W P, Qi S T, Ge Z J, Min L J, Zhu X L, Huang X, Liu J P, Ouyang Y C, Hou Y, Schatten H, Sun Q Y. Maternal diabetes causes abnormal dynamic changes of endoplasmic reticulum during mouse oocyte maturation and early embryo development. Reproductive Biology and Endocrinology : RB&E, 2013, 11:31.
[67] Ma J Y, Li M, Ge Z J, Luo Y, Ou X H, Song S, Tian D, Yang J, Zhang B, Ou-Yang Y C, Hou Y, Liu Z, Schatten H, Sun Q Y. Whole transcriptome analysis of the effects of type I diabetes on mouse oocytes. PLoS One, 2012, 7(7):e41981.
[68] Wang S, Kou Z, Jing Z, Zhang Y, Guo X, Dong M, Wilmut I, Gao S. Proteome of mouse oocytes at different developmental stages. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(41):17639-17644.
[69] Lee S Y, Lee H S, Kim E Y, Ko J J, Yoon T K, Lee W S, Lee K A. Thioredoxin-interacting protein regulates glucose metabolism and affects cytoplasmic streaming in mouse oocytes. PLoS One, 2013, 8(8):e70708.
[70] Salhab M, Dhorne-Pollet S, Auclair S, Guyader-Joly C, Brisard D, Dalbies-Tran R, Dupont J, Ponsart C, Mermillod P, Uzbekova S. In vitro maturation of oocytes alters gene expression and signaling pathways in bovine cumulus cells. Molecular Reproduction and Development, 2013, 80(2):166-182. |