[1] 王丹英, 汪自强, 方勇, 徐律平. 菜用大豆食味品质及其与内含物关系研究. 金华职业技术学院学报, 2002(3): 15-17.
Wang D Y, Wang Z Q, Fang Y. Studies on the relationship between vegetable soybean eating quality and its components. Journal of Jinhua College of Profession and Technology, 2002(3): 15-17. (in Chinese)
[2] 王远, 宋江峰, 刘春泉, 李大婧. 不同贮藏温度条件下菜用大豆蔗糖代谢与相关酶活性变化. 食品科学, 2014, 35(18): 185-189.
Wang Y, Song J F, Liu C Q, Li D J. Changes of sucrose metabolism and related enzyme activities in vegetable soybean at different storage temperatures. Food Science, 2014, 35(18): 185-189. (in Chinese)
[3] Raina A, Jänne J. Physiology of the natural polyamines putrescine, spermidine and spermine. Medical Biology, 1975, 53(3): 121-147.
[4] Choudhary S P, Oral H V, Bhardwaj R, Bhardwaj R, Yu J Q, Tran L S P. Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. Journal of Experimental Botany, 2012, 63(15): 5659-5675.
[5] Asghari M R, Abdollahi R. Changes in quality of strawberries during cold storage in response to postharvest nitric oxide and putrescine treatments. Acta Alimentaria, 2013, 42(4): 529-539.
[6] Barman K, Asrey R, Pal R K. Putrescine and carnauba wax pretreatments alleviate chilling injury, enhance shelf life and preserve pomegranate fruit quality during cold storage. Scientia Horticulturae, 2011, 130(4): 795-800.
[7] Champa W A, Gill M I S, Mahajan B V C, Bedi S. Postharvest treatment of polyamines maintains quality and extends shelf-life of table grapes (Vitis vinifera L.) cv. flame seedless. Postharvest Biology and Technology, 2014, 91: 57-63.
[8] Bal E. Effects of exogenous polyamine and ultrasound treatment to improve peach storability. Chilean Journal of Agricultural Research, 2013, 73(4): 435-440.
[9] Cao S F, Yang Z F, Zheng Y H. Sugar metabolism in relation to chilling tolerance of loquat fruit. Food Chemistry, 2013, 136(1): 139-143.
[10] Wang K, Shao X F, Gong Y F, Zhu Y, Wang H F, Zhang H L, Yu D D, Yu F, Qiu Z Y, Lu H. The metabolism of soluble carbohydrates related to chilling injury in peach fruit exposed to cold stress. Postharvest Biology and Technology, 2013, 86: 53-61.
[11] 贾永霞. 外源亚精胺提高黄瓜幼苗低氧胁迫耐性的生理调节功能 [D]. 南京: 南京农业大学, 2009.
Jia Y X. studies on physiological regulation function of exogenous spermidine on cucumber seedlings tolerance to hypoxia [D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese)
[12] Kassinee S, Matsui T, Okuda N. Changes in acid invertase activity and sugar distribution during postharvest senescence in vegetable soybean. Asian Journal of Plant Sciences, 2004, 3(4): 433-438.
[13] Sugimoto M, Goto H, Otomo K, Ito M, Onuma H, Sugaware M, Abe S, Tomita M, Soga T. Metabolomic profiles and sensory attributes of edamame under various storage duration and temperature conditions. Journal of Agricultural and Food Chemistry, 2010, 58(14): 8418-8425.
[14] Saldivar X, Wang Y J, Chen P, Mauromoustakos A. Effects of blanching and storage conditions on soluble sugar contents in vegetable soybean. LWT-Food Science and Technology, 2010, 43(9): 1368-1372.
[15] 张平, 张鹏, 刘辉, 陈绍慧, 张秀敏, 李江阔. 不同低温处理对樱桃冷害发生的影响. 食品科学, 2012, 33(12): 303-308.
Zhang P, Zhang P, Liu H, Chen S H, Zhang X M, Li J K. Effect of low-temperature treatment on chilling injury in cherry fruits. Food Science, 2012, 33(12): 303-308. (in Chinese)
[16] 胡位荣, 张昭其, 季作樑, 刘顺枝. 冷害对荔枝果皮膜脂过氧化和保护酶活性的影响. 华南农业大学学报, 2004, 25(3): 6-9.
Hu W R, Zhang Z Q, Ji Z L, Liu S Z. Effect of chilling injury on membrane lipid peroxidation and activities of cell defense enzyme in litchi pericarp. Journal of South China Agricultural University, 2004, 25(3): 6-9. (in Chinese)
[17] Razzaq K, Khan A S, Malik A U, Shahid M, Ullah S. Role of putrescine in regulating fruit softening and antioxidative enzyme systems in ‘Samar Bahisht Chaunsa’mango. Postharvest Biology and Technology, 2014, 96: 23-32.
[18] Nielsen T H, Skjærbæ H C, Karlsen P. Carbohydrate metabolism during fruit development in sweet pepper (Capsicum annuum) plants. Physiologia Plantarum, 1991, 82(2): 311-319.
[19] Sayyari M, Babalar M, Kalantari S, Romero D M, Guillén F, Serrano M, Valero D. Vapour treatments with methyl salicylate or methyl jasmonate alleviated chilling injury and enhanced antioxidant potential during postharvest storage of pomegranates. Food Chemistry, 2011, 124(3): 964-970.
[20] Champa W A, Gill M I S, Mahajan B V C, Bedi S. Exogenous treatment of spermine to maintain quality and extend postharvest life of table grapes (Vitis vinifera L.) cv. Flame Seedless under low temperature storage. LWT-Food Science and Technology, 2015, 60(1): 412-419.
[21] 刘宾, 王学君, 毛江胜, 邓立刚, 王雪, 赵平娟, 王文正, 李桂凤. 精胺处理对凯特杏低温贮藏期间生理特性的影响. 食品科学, 2010(22): 358-360.
Liu B, Wang X G, Mao J S, Deng L G, Wang X, Zhao P J, Wang Z W, Li G Y. Effect of spermine treatment on physiological characteristics of Katy fruits (Prunus armeniaca L.) during low temperature storage. Food Science, 2010(22): 358-360. (in Chinese)
[22] 王学. 低温胁迫下精胺对黄瓜幼苗抗氧化酶系统及膜脂过氧化的影响. 种子, 2008, 27(11): 33-36.
Wang X. Effects of spermine on antioxidant enzyme systems and membrane lipid peroxidation in cucumber seedling under low temperature stress. Seeds, 2008, 27(11): 33-36. (in Chinese)
[23] Gill S S, Tuteja N. Polyamines and abiotic stress tolerance in plants. Plant Signaling & Behavior, 2010, 5(1): 26-33.
[24] 陈克明, 陈伟, 杨震峰. 桃果实采后可溶性糖和果胶类物质的变化与低温冷害的关系. 核农学报, 2013, 27(5): 647-652.
Chen K M, Chen W, Yang Z F. The relationship between the changes of soluble sugar and pectic substances in peach fruit after harvest and chilling injury. Journal of Nuclear Agricultural Sciences, 2013, 27(5): 647-652. (in Chinese)
[25] Shao X F, Zhu Y, Cao S F, Wang H F, Song Y X. Soluble sugar content and metabolism as related to the heat-induced chilling tolerance of loquat fruit during cold storage. Food and Bioprocess Technology, 2013, 6(12): 3490-3498.
[26] Purvis A C, Grierson W. Accumulation of reducing sugar and resistance of grapefruit peel to chilling injury as related to winter temperatures. Journal of American Society for Horticultural Science, 1982, 107(1): 139-142.
[27] Zanor M I, Osorio S, Nunes N A, Carrsri F, Loshe M, Usadel B, Kühn C, Bleiss W, Giavalisco P, Willmitzer L, Sulpice R, Zhou Y H, Fernie A R. RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiology, 2009, 150(3): 1204-1218.
[28] 潘秋红, 张大鹏. 植物酸性转化酶基因及其表达调控. 植物学通报, 2005, 22(2): 129-137.
Pan Q H, Zhang D P. Plant acid invertase gene and regulation of its expression. Chinese Bulletin of Botany, 2005, 22(2):129-137. (in Chinese)
[29] Sunkar R, Li Y F, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends in Plant Science, 2012, 17(4): 196-203.
[30] Mao L, Que F, Wang G. Sugar metabolism and involvement of enzymes in sugarcane (Saccharum officinarum L.) stems during storage. Food Chemistry, 2006, 98(2): 338-342.
[31] Choudhury S R, Roy S, Das R, Sengupta D N. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter. Planta, 2008, 229(1): 207-223.
[32] Itai A, Tanahahi T. Inhibition of sucrose loss during cold storage in Japanese pear (Pyrus pyrifolia Nakai) by 1-MCP. Postharvest Biology and Technology, 2008, 48(3): 355-363.
[33] Zhu Z, Liu R, Li B, Tian S P. Characterisation of genes encoding key enzymes involved in sugar metabolism of apple fruit in controlled atmosphere storage. Food Chemistry, 2013, 141(4): 3323-3328. |