[1] Jones J D, Dangl J L. The plant immune system. Nature, 2006, 444(7117): 323-329.
[2] Felix G, Duran J D, Volko S, Boller T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal, 1999, 18(3): 265-276.
[3] Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. The Plant Cell, 2004, 16: 3496-3507.
[4] Felix G, Regenass M, Boller T. Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. The Plant Journal, 1993, 4(2): 307-316.
[5] Heese A, Hann D R, Gimenez-Ibanez S, Jones A M, He K, Li J, Schroeder J I, Peck S C, Rathjen J P. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proceedings of the National Academy of Sciences of the United Statesof America, 2007, 104(29): 12217-12222.
[6] Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones J D, Boller T, Felix G. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell, 2006, 125: 749-760.
[7] Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. CERK1, A LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciencesof the United Statesof America, 2007, 104(49): 19613-19618.
[8] Thomma B P, Nurnberger T, Joosten M H. Of PAMP and effectors: the blurred PTI-ETI dichotomy. The Plant Cell, 2011, 23: 4-15.
[9] Kazan K, Lyons R. Intervention of phytohormone pathways by pathogen effectors. The Plant Cell,2014,26: 2285-2309.
[10] Gomez-Gomez L, Boller T. Flagellin perception: a paradigm for innate immunity. Trends in Plant Science, 2002, 7(6): 251-256.
[11] Niño-Liu D O, Ronald P C, Bogdanove A J. Xanthomonas oryzae pathovars: model pathogens of a model crop. Molecular Plant Pathology, 2006, 7(5): 303-324.
[12] Makino S, Sugio A, White F, Bogdanove A J. Inhibition of resistance gene-mediated defense in rice by Xanthomonas oryzae pv. oryzicola. Molecular Plant-Microbe Interactions, 2006, 19(3): 240-249.
[13] da Silva A C, Ferro J A, Reinach F C, Farah C S, Furlan L R, Quaggio R B, Monteiro-Vitorello C B, Van Sluys M A, Almeida N F, Alves L M. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 2002, 417(6887): 459-463.
[14] Li R F, Lu G T, Li L, Su H Z, Feng G F, Chen Y, He Y Q, Jiang B L, Tang D J, Tang J L. Identification of a putative cognate sensor kinase for the two-component response regulator HrpG, a key regulator controlling the expression of the hrp genes in Xanthomonas campestris pv. campestris. Environmetal Microbioloy, 2014, 16(7): 2053-2071.
[15] Büttner D, Bonas U. Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiology Reviews, 2010, 34(2): 107-133.
[16] Thieme F, Koebnik R, Bekel T, Berger C, Boch G, Büttner D, Caldana C, Gaigalat L, Goesmann A, Kay S. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. Journal of Bacteriology, 2005, 187(21): 7254-7266.
[17] Li Y R, Zou H , Che Y Z, Cui Y P, Guo W, Zou L F, Chatterjee S, Biddle E M, Yang C H, Chen G Y. A novel regulatory role of HrpD6 in regulating hrp-hrc-hpa genes in Xanthomonas oryzae pv. oryzicola. Molecular Plant-Microbe Interactions,2011, 24(9): 1086-1101.
[18] Dong H P, Peng J, Bao Z, Meng X, Bonasera J M, Chen G, Beer S V, Dong H. Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiology, 2004, 136(3): 3628-3638.
[19] Li Y R, Ma W X, Che Y Z, Zou L F, Zakria M, Zou H S, Chen G Y. A highly-conserved single-stranded DNA-binding protein in Xanthomonas functions as a harpin-like protein to trigger plant immunity. PLoS ONE,2013,8(2): e56240.
[20] Oh C S, Beer S V. AtHIPM, An ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effect of HrpN in Arabidopsis. Plant Physiology, 2007, 145: 426-436.
[21] Haapalainen M, Engelhardt S, Kufner I, Li C M, Nurnberger T, Lee J, Romantschuk M, Taira S. Functional mapping of harpin HrpZ of Pseudomonas syringae reveals the sites responsible for protein oligomerization, lipid interactions and plant defence induction. Molecular Plant Pathology, 2011, 12(2): 151-166.
[22] Li Y R, Che Y Z, Zou H S, Cui Y P, Guo W, Zou L F, Biddle E M, Yang C H, Chen G Y. Hpa2 required by HrpF to translocate Xanthomonas oryzae transcriptional activator-like effectors into rice for pathogenicity. Applied and Environmental Microbiology, 2011, 77(11): 3809-3818.
[23] Miller J H. Experiments in Molecular Genetics. NY: Cold Spring Harbor Laboratory, 1972.
[24] Huang C, Xie Y, Zhou X. Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component. Plant Biotechnology Journal, 2009, 7(3): 254-265.
[25] 赵梅勤, 李玉蓉, 邹丽芳, 陈功友. 受条斑病菌侵染的水稻cDNA文库构建. 南京农业大学学报, 2009, 32(2): 51-55.
Zhao M Q, Li Y R, Zou L F, Chen G Y. Construction of a r ice cDNA library induced by infection of Xanthomonas oryzae pv.oryzicola. Journal of NanjingAgricultural University,2009, 32(2): 51-55. (in Chinese)
[26] Tamura K, Dudley J, Nei M, Kumar S. MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 2007, 24(8): 1596-1599.
[27] Alani E, Thresher R, Griffith J D, Kolodner R D. Characterization of DNA-binding and strand-exchange stimulation properties of y-RPA, a yeast single-strand-DNA-binding protein. Journal of Molecular Biology, 1992,227(1): 54-71.
[28] Lohman T, Overman L. Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration. Journal of Biological Chemistry, 1985, 260(6): 3594-3603.
[29] Meyer R, Laine P. The single-stranded DNA-binding protein of Escherichia coli. Microbiological Reviews, 1990, 54(4): 342-380.
[30] 田磊, 廖明芳, 李冀洲, 姜福亭, 陈学东, 王育红. 细胞骨架蛋白中ADF/cofilin蛋白家系的作用: 如何与肌动蛋白结合及发挥解聚作用? 中国组织工程研究与临床康复, 2009, 13(50): 9941-9945.
Tian L, Liao M F, Li J Z, Jiang F T, Chen X D, Wang Y H. ADF/cofilins proteinic family constellation in cytoskeletal protein: How does depolymerization occur through combination of ADF/cofilins with actin? Journal of Clinical Rehabilitative Tissue Engineering Research, 2009, 13(50): 9941-9945. (in Chinese)
[31] Cárdenas L, Vidali L, Domnguez J, Prez H, Snchez F, Hepler P K, Quinto C. Rearrangement of actin microfilaments in plant root hairs responding to Rhizobium etli nodulation signals. Plant Physiology, 1998, 116: 871-877.
[32] Bamburg J R, Harris H E, Weeds A G. Partial purification and characterization of an actin depolymerizing factor from brain. FEBS Letters, 1980, 121(1): 178-182.
[33] Giuliano K A, Khatib F A, Hayden S M, Daoud E W, Adams M E, Amorese D A, Bernstein B W, Bamburg J R. Properties of purified actin depolymerizing factor from chick brain. Biochemistry, 1988, 27(25): 8931-8938.
[34] Henty-Ridilla J L, Li J, Day B, Staiger C J. Actin depolymerizing factor 4 regulates actin dynamics during innate immune signaling in Arabidopsis. The Plant Cell, 2014, 26(1): 340-352.
[35] Henty-Ridilla J L, Shimono M, Li J, Chang J H, Day B, Staiger C J. The plant actin cytoskeleton responds to signals from microbe- associated molecular patterns. PLoS Pathogens, 2013, 9(4): e1003290.
[36] Chen C Y, Wong E I, Vidali L, Estavillo A, Hepler P K, Wu H M, Cheung A Y. The regulation of actin organization by actin- depolymerizing factor in elongating pollen tubes. The Plant Cell,2002, 14: 2175-2190.
[37] Zhao H, Hakala M, Lappalainen P. ADF-cofilin binds phosphoinositides in a multivalent manner to act as a PIP2-density sensor. Biophysical Journal, 2010, 98: 2327-2336.
[38] Maciver S K, Hussey P J. The ADF/cofilin family: actin remodeling proteins. GenomeBiology, 2002, 3(5): 3007.1-3007.12.
[39] Durst S, Nick P, Maisch J. Nicotiana tabacum actin-depolymerizing factor 2 is involved in actin-driven, auxin-dependent patterning. Journal of Plant Physiology, 2013, 170(12): 1057-1066.
[40] Staiger C J, Sheahan M B, Khurana P, Wang X, McCurdy D W, Blanchoin L. Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array. The Journal of Cell Biology, 2009, 184(2): 269-280. |