[1] Cai Y H, Chen X J, Xie K, Xing Q K, Wu Y W, Li J, Du C H, Sun Z X, Guo Z J. Dlf1, a WRKY transcription factor, is involved in the control of flowering time and plant height in rice. Plos One, 2014, 9(7): e102529.
[2] Andres F, Coupland G. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics,2010, 13(9): 627-639.
[3] Amasino R. Seasonal and developmental timing of flowering. The Plant Journal,2010, 61(6): 1001-1013.
[4] Wickland D P, Hanzawa Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: Functional evolution and molecular mechanisms. Molecular Plant, 2015, 8(7): 983-997.
[5] 李莉, 李旭, 刘亚文, 刘宏涛. 光和温度调控开花时间的研究进展. 中国科学(生命科学), 2016, 46(3): 253-259.
LI L, LI X, LIU Y W, LIU H T. Flowering responses to light and temperature (Science China: Life Sciences), 2016, 46(3): 253-259. (in Chinese)
[6] Higuchi Y, Narumi T, Oda A, Nakano Y, Sumitomo K, Fukai S, Hisamatsu T. The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums. Proceedings of the National Academy of Sciences of the USA, 2013, 110(42): 17137-17142.
[7] HO W W H, Weigel D. Structural features determining flower- promoting activity of Arabidopsis FLOWERING LOCUS T. The Plant Cell, 2014, 26(2): 552-564.
[8] Li Q, Fan C M, Zhang X M, Wang X, Wu F Q, Hu R B, Fu Y F. Identification of a soybean MOTHER OF FT AND TFL1 homolog involved in regulation of seed germination. Plos One, 2014, 9(6): e99462.
[9] Hanano S, Goto K. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. The Plant Cell, 2011, 23(9): 3172-3184.
[10] Harig L, Beinecke F A, Oltmanns J, Muth J, Muller O, Ruping B, Twyman R M, Fischer R, Prufer D, Noll G A. Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. The Plant Journal, 2012, 72(6): 908-921.
[11] Ando E, Ohnishi M, Wang Y, Matsushita T, Watanabe A, Hayashi Y, Fujii M, Ma J F, Inoue S, Kinoshita T. Twin sister of FT, GIGANTEA, and constans have a positive but indirect effect on blue light-induced stomatal opening in Arabidopsis. Plant Physiology, 2013, 162(3): 1529-1538.
[12] Foucher F, Morin J, Courtiade J, Cadioux S, Ellis N, Banfield M J, Rameau C. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. The Plant Cell,2003, 15(11): 2742-2754.
[13] Ahn J H, Miller D, Winter V J, Banfield M J, Lee J H, Yoo S Y, Henz S R, Brady R L, Weigel D. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. The EMBO Journal, 2006, 25(3): 605-614.
[14] Chen Y H, Jiang P, Thammannagowda S, Liang H Y, Wilde H D. Characterization of peach TFL1 and comparison with FT/TFL1 gene families of the rosaceae. Journal of the American Society for Horticultural Science, 2013, 138(1): 12-17.
[15] Coelho C P, Minow M A, Chalfun A, Colasanti J. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis. Frontiers In Plant Science, 2014, 221(5): 1-12.
[16] Taoka K, Ohki I, Tsuji H, Kojima C, Shimamoto K. Structure and function of florigen and the receptor complex. Trends in Plant Science, 2013, 18(5): 287-294.
[17] 李敬, 谷慧英, 王志敏, 汤青林, 宋明. 拟南芥成花关键基因调控网络研究进展. 生物技术通报, 2014, 30(12): 1-8.
LI J, GU H Y, WANG Z M, TANG Q L, SONG M. Research progress of flowering gene regulatory networks in Arabidopsis thaliana. Biotechnology Bulletin, 2014, 30(12): 1-8. (in Chinese)
[18] Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 2007, 316(5827): 1030-1033.
[19] Jaeger K E, Pullen N, Lamzin S, Morris R J, Wigge P A. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. The Plant Cell, 2013, 25(3): 820-833.
[20] Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science,2005, 309(5737): 1052-1056.
[21] Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K. Hd3a and RFT1 are essential for flowering in rice. Development, 2008, 135(4): 767-774.
[22] Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri Y A, Tamaki S.14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature,2011, 476(7360): 332-335.
[23] Nan H Y, Cao D, Zhang D Y, Li Y, Lu S J, Tang L L, Yuan X H, Liu B H, Kong F J. GmFT2a and GmFT5a redundantly and differentially regulate flowering through interaction with and upregulation of the bZIP transcription factor GmFDL19 in soybean. Plos One,2014, 9(5): e97669.
[24] Purwestri Y A, Ogaki Y, Tamaki S, Tsuji H, Shimamoto K. The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a. Plant and Cell Physiology,2009, 50(3): 429-438.
[25] Pnueli L, Gutfinger T, Hareven D, Ben-Naim O, Ron N, Adir N, Lifschitz E. Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. The Plant Cell,2001, 13(12): 2687-2702.
[26] Jiang K, Liberatore K L, Park S J, Alvarez J P, Lippman Z B. Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture. PLoS Genetics,2014, 9(12): e1004043.
[27] Gampala S S, Kim T W, He J X, Tang W Q, Deng Z P, Bai M Y, Guan S H, Lalonde S, Sun Y, Gendron J M. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Developmental Cell, 2007, 13(2): 177-189.
[28] Bai M Y, Zhang L Y, Gampala S S, Zhu S W, Song W Y, Chong K, Wang Z Y. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proceedings of the National Academy of Sciences of the USA,2007, 104(34): 13839-13844.
[29] Wigge P A, Kim M C, Jaeger K E, Busch W, Schmid M, Lohmann J U, Weigel D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science,2005, 309(5737): 1056-1059.
[30] Jaeger K E, Pullen N, Lamzin S, Morris R J, Wigge P A. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. The Plant Cell, 2013, 25(3): 820-833.
[31] 李先昆, 聂智毅, 曾日中. 酵母双杂交技术研究与应用进展. 安徽农业科学, 2009, 37(7): 2867-2869.
LI X K, NIE Z Y, ZENG R Z. Research and application advances of yeast two-hybrid technique. Journal of Anhui Agricultural Science, 2009, 37(7): 2867-2869. (in Chinese)
[32] 王丰青, 张重义, 童治军, 魏荷, 吴为人. 应用双分子荧光互补(Bi FC)方法分析烟草中介体亚基之间的互作. 农业生物技术学报, 2012, 20(1): 38-47.
WANG F Q, ZHANG Z Y, TONG Z J, WEI H, WU W R. Interactions among mediator subunits of tobacco by bimolecular fluorescence complementation (BiFC) method. Journal of Agricultural Biotechnology, 2012, 20(1): 38-47. (in Chinese) |