[1] Blackman P G, Davise W J. Root communication in maize plants of the effects of soil drying. Journal of Experimental Botany, 1985, 36(1): 39-48.
[2] Rosenthal R N, Woodbridge C G, Pfeiffer C L. Root temperature and nutrient levels of chrysanthemum shoots. HortScience, 1973, 8(1): 26-27.
[3] Cadenas E, Davies K J. Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology and Medicine, 2000, 29(3): 222-230.
[4] Ma H Y, Lyu D G, Liu G C, Qin S J. Mitochondrial response in the apical and lateral flower buds of the Hanfu apple to cold stress during the dormancy stage. Acta Ecologica Sinica, 2013, 33(1): 52-58.
[5] Lambers H, Robinson S A, Ribas-Carbo M. Regulation of respiration in vivo. Plant Respiration, 2005, 18: 1-15.
[6] Ribas-Carbo M, Taylor N L, Gies L, Busquets S, Finnegan P M, Day D A , Lambers H, Medrano H, Berry J A, Flexas J. Effects of water stress on respiration in soybean leaves. Plant Physiology, 2005, 139(1): 466-473.
[7] 秦嗣军, 吕德国, 李志霞, 马怀宇, 刘灵芝, 刘国成. 水分胁迫对东北山樱幼苗呼吸等生理代谢的影响. 中国农业科学, 2011, 44(1): 201-209.
Qin S J, Lü D G, Li Z X, Ma H Y, Liu L Z, Liu G C. Effects of water stress on respiration and other physiological metabolisms of Cerasus sachalinensis Kom. seedlings. Scientia Agricultura Sinica, 2011, 44(1): 201-209. (in Chinese)
[8] Cande C, Cohen I, Daugas E, Ravagnan L, Larochette N, Zamzami N, Kroemer G. Apoptosis inducing factor (AIF): a novel castase- independent death effector released from mitochondria. Biochimie, 2002, 84(2): 215-222.
[9] Zhang L, Li Y, Xing D, Gao C. Characterization of mitochondrial dynamics and subcellular localization of ROS reveal that HsfA2 alleviates oxidative damage caused by heat stress in Arabidopsis. Journal of Experimental Botany, 2009, 60(7): 2073-2091.
[10] Xiong L M, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. The Plant Cell, 2002, 14(1): S165-S183.
[11] Kim M C, Chung W S, Yun D J, Cho M J. Calcium and calmodulin- mediated regulation of gene expression in plants. Molecular Plant, 2009, 2(l): 13-21.
[12] 李美如, 刘鸿先, 王以柔, 曾韶西, 郭俊彦. 钙对水稻幼苗抗冷性的影响. 植物生理学报, 1996, 22(4): 379-384.
Li M R, Liu H X, Wang Y R, Zeng S X, Guo J Y. Effect of calcium on cold-resistance of rice seedlings. Acta Phytophysiologica Sinica, 1996, 22(4): 379-384.(in Chinese)
[13] 杨玖英, 谭艳萍, 夏春皎, 朱银国, 刘学群. 红莲型细胞质雄性不育性与线粒体渗透性转换. 武汉植物学研究, 2004, 22(5): 385-390.
Yang J Y, Tan Y P, Xia C J, Zhu Y G, Liu X Q. Honglian cytoplasmic male sterility in relation to its mitochondrial permeability transition. Journal of Wuhan Botanical Research, 2004, 22(5): 385-390.(in Chinese)
[14] 金超芳, 沈生荣, 赵保路. EGCG对线粒体PT孔开放及Ca2+转运的影响. 茶叶科学, 2002, 22(1): 14-18.
Jin C F, Shen S R, Zhao B L. Influences of EGCG on mitochondrial PTP opening and Ca2+ transportation. Journal of Tea Science, 2002, 22(1): 14-18. (in Chinese)
[15] Braidot E, Petrussa E, Macri F, Vianello A. Plant mitochondrial electrical potential monitored by fluorescence quenching of rhodamine 123. Biologia Plantarum, 1998, 41(2): 193-201.
[16] 王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系. 植物生理学通讯, 1990, 6: 55-57.
Wang A G, Luo G H. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiology Communications, 1990, 6: 55-57.( in Chinese)
[17] 余让才, 潘瑞炽. 蓝光对水稻幼苗呼吸代谢的影响. 中国水稻科学, 1996, 10(3): 159-163.
Yu R C, Pan R C. Effect of blue light on the respiration of rice (Oryza sativa) seedlings. Chinese Journal of Rice Science, 1996, 10(3): 159-163. (in Chinese)
[18] Shah K, Kumar R G, Verma S, Dubey R S. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, 2001, 161(6): 1135-1144.
[19] Zoratti M, Szabo I. The mitochondria permeability transition. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, 1995, 1241(2): 139-176.
[20] Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssiere J, Petit P, Kroemer G. Reduction in mitochondrial potential constitutes an early irreversible step of programed lymphocyte death in vivo. Journal of Experimental Medicine, 1995, 181(5): 1661-1672.
[21] Lee S H, Chung G C, Steudle E. Gating of aquaporins by low temperature in roots of chilling-sensitive cucumber and chilling- tolerant figleaf gourd. Journal of Experimental Botany, 2005, 56(413): 985-995.
[22] Flagella Z, Trono D, Pompa M, Fonzo N D, Pastore D. Seawater stress applied at germination affects mitochondrial function in durum wheat (Triticum durum ) early seedlings. Functional Plant Biology, 2006,33(4): 357-366.
[23] Pastore D, Trono D, Laus M N, Fonzo N D, Flagella Z. Possible plant mitochondria involvement in cell adaptation to drought stress. Journal of Experimental Botany, 2007, 58(2): 195-210.
[24] Ichas F, Mazat J P. From calcium signaling to cell death: two conformation for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochimica et Biophysica Acta(BBA)-Bioenergetics, 1998, 1366(1): 33-50.
[25] Castello P R, Drechsel D A, Patel M. Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. The Journal of Biological Chemistry, 2007, 282(19): 14186-14193.
[26] Murphy M P. How mitochondria produce reactive oxygen species? Biochemical Journal, 2009, 417(1): 1-13.
[27] Liu S S. Cooperation of a “reactive oxygen cycle” with the Q cycle and the proton cycle in the respiratory chain-superoxide generating and cycling mechanisms in mitochondria. Journal of Bioenergetics and Biomembranes, 1999, 31(4): 367-376.
[28] Kowaltowski A J, Castilho R F, Vercesi A E. Mitochondrial permeability transition and oxidative stress. FEBS Letters, 2001, 495(1): 12-15.
[29] Kowaltowski A J, Castilho R F, Vercesi A E. Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial- generated reactive oxygen species. FEBS Letters, 1996, 378(2): 150-152.
[30] Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis, 2007, 12(5): 913-922.
[31] Armstrong J S. The role of the mitochondrial permeability transition in cell death. Mitochondrion, 2006, 6(5): 225-234.
[32] Trewavas A J, Malho R. Ca2+ signaling in plant cells: the big network. Current Opinion in Plant Biology, 1998, 1(5): 428-433.
[33] Henriksson K N, Trewavas A J. The effect of short-term low-temperature treatments on gene expression in Arabidopsis correlates with changes in intracellular Ca2+ levels. Plant, Cell and Environment, 2003, 26(4): 485-496.
[34] Henry M F, Nyns E J. Cyanide-insensitive respiration. An alternative mitochondrial pathway. Sub-cellular Biochemistry, 1975, 4(1): 1-65.
[35] Zhao M G, Liu Y G, Zhang L X, Zheng L, Bi Y R. Effects of enhanced UV-B radiation on the activity and expression of alternative oxidase in red kidney bean leaves. Journal of Integrative Plant Biology , 2007, 49(9): 1320-1326.
[36] Moore A L, Albury M S, Crichton P G, Affourtit C. Function of the alternative oxidase: is it still a scavenger. Trends in Plant Science, 2002, 7(11): 478-481.
[37] Millenaar F F, Benschop J J, Wagner A M, Lambers H. The role of the alternative oxidase in stabilizing the in vivo reduction state of the ubiguinone pool and the activation state of the alternative oxidase. Plant Physiology, 1998, 118(2): 599-607.
[38] Mizuno N, Sugie A, Kobayashi F, Takumi S. Mitochondrial alternative pathway is associated with development of freezing tolerance in common wheat. Journal of plant physiology, 2008, 165(4): 462-467.
[39] Sujie A, Naydenov N, Mizuno N, Nakamura C, Takumi S. Overexpression of wheat alternative oxidase gene Waox1a alters respiration capacity and response to reactive oxygen species under low temperature in transgenic Arabidopsis. Genes & Genetic Systems, 2006, 81(5): 349-354.
[40] Sweetlove L J, Fait A, Nunes-Nesi A, Williams T, Fernie A R. The mitochondrion: an integration point of cellular metabolism and signaling. Critical Reviews in Plant Sciences, 2007, 26(1): 17-43.
[41] Lei T, Feng H, Sun X, Dai Q L, Zhang F, Liang H G, Lin H H. The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid. Plant Growth Regulation, 2010, 60(1): 35-42.
[42] Liao W B, Zhang M L, Huang G B, Yu J H. Ca2+ and CaM are involved in No- and H2O2-induced adventitious root development in marigold. Journal of Plant Growth Regulation, 2012, 31(2): 253-264.
[43] Lin S Z, Zhang Z Y, Lin Y Z, Zhang Q, Guo H. The Role of calcium and calmodulin in freezing-induced freezing resistance of Populus tomentosa cuttings. Journal of Plant Physiology and Molecular Biology, 2004, 30(1): 59-68.
[44] 简水仙. 高温逆境下外源钙对柑橘生理生化的调控[D]. 重庆: 西南大学, 2013: 25-35.
Jian S X. Regulation of exogenous calcium on physiology and biochemistry of citrus under high temperature stress[D]. Chong Qing: Southwest University, 2013: 25-35. (in Chinese)
[45] Luan S. Protein phophatases and signaling cascades in higher plants. Trends in Plant Science, 1998, 3(7): 271-275.
[46] Sanders D, Brownlee C, Harper J F. Communicating with calcium. The Plant Cell, 1999, 11(4): 691-706. |