[1]汤圣祥, 江云球, 张本郭, 陆永良, 余柳青, 余汉勇. 中国稻区的生物多样性. 生物多样性, 1999, 7(1): 73-78.
Tang S X, Jiang Y Q, Zhang B G, Lu Y L,Yu L Q, Yu H Y. Biodiversfty of rice growing regions in China. Chinese Biodiversity, 1999, 7(1): 73-78. (in Chinese)
[2]汤圣祥, 魏兴华, 徐群. 国外对野生稻资源的评价和利用进展. 植物遗传资源学报, 2008, 9(2): 223-229.
Tang S X, Wei X H, Xu Q. Progress of Evaluation and utilization of wild rice resources abroad, Journal of Plant Genetic Resources, 2008, 9(2): 223-229. (in Chinese)
[3]Ramsay L D, Jennings D E, Kearsey M J, Marshall D F, Bohuon E J, Arthur A E, Lydiate D J. The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci. Genome, 1996, 39(3): 558-567.
[4]Doi K, Iwata N, Yoshimura A. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of Japonica rice (O.sativa L.). Rice Genetics Newsletters, 1997, 14: 39-41.
[5]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147-1162.
[6]Sobrizal K, Ikeda K, Sanchez P L, Yoshimura A. RFLP mapping of a seed shattering gene on chromosome 4 in rice. Rice Genetics Newsletters, 1999, 16: 74-75.
[7]Kurakazu T, Sobrizal, Ikeda K, Sanchez P L, Doi K, Angeles E R, Khush G S, Yoshimura A. Oryza meridionalis chromosomal segment introgression lines in cultivated rice, O. sativa L.. Rice Genetics Newsletters, 2001, 18: 81-82.
[8]郝伟, 金健, 孙世勇, 朱美珍, 林鸿宣. 覆盖野生稻基因组的染色体片段替换系的构建及其米质相关数量性状基因座位的鉴定. 植物生理与分子生物学学报, 2006, 32(3): 354-362.
Hao W, Jin J, Sun S Y, Zhu M Z, Lin H X. Construction of chromosome segment substitution lines carrying overlapping chromosome segments of the whole wild rice genome and identification of quantitative trait loci for rice quality. Journal of Plant Physiology and Molecular Biology, 2006, 32(3): 354-362. (in Chinese)
[9]李德军. 江西东乡普通野生稻渗入系的构建及高产QTL定位[D]. 北京: 中国农业大学, 2003.
Li D J. Development and QTL analysis of chromosome segment substitution lines in chinese Dongxiang common wild rice[D]. Beijing: China Agricultural University, 2003. (in Chinese)
[10]董华林, 张晨昕, 曾波, 孙文强, 余四斌. 利用野生稻高代回交群体分析水稻农艺性状QTL. 华中农业大学学报, 2009, 28(6): 645-650.
Dong H L, Zhang C X, Zeng B, Sun W Q, Yu S B. Identification of agronomic traits QTL in common wild rice advanced backcross population. Journal of Huazhong Agricultural University, 2009, 28(6): 645-650. (in Chinese)
[11]刘家富, 奎丽梅, 朱作峰, 谭禄宾, 王桂娟, 黎其万, 束继红, 孙传清. 普通野生稻稻米加工品质和外观品质性状QTL定位. 农业生物技术学报, 2007, 15(1): 90-96.
Liu J F, Kui L M, Zhu Z F, Tan L B, Wang G J, Li Q W, Shu J H, Sun C Q. Identification of QTLs associated with processing quality and appearance quality of common wild rice (Ozyza rufipogon Griff). Journal of Agricultural Biotechnology, 2007, 15(1): 90-96. (in Chinese)
[12]Gutierrez A G, Carabali S J, Giraldo O X, Martinez C P, Correa F, PradoG, Tohme J, Lorieux M. ldentification of a rice stripe necrosis virus resistance locus and yield component QTLs using O.sativa× O.glaberrima introgression lines. BMC Plant Biology, 2010, 10: 6.
[13]Li J M, Thomosom M, McCouch S R. Fine mapping of a grain-weight quantitative trait locus in the pericenttromeric region of rice chromosome 3. Genetic Society of America, 2004, 168: 2187-2195.
[14]Xie X B, Song M H, Jin F X, Ahn S N, Sun J P, Hwang H G, McCouch S R. Fine mapping of a grain quantitative trait locus on rice chromosome 8 using near-isogenic lines drived from across between O. sative × O. rufipogon. Theoretical and Applied Genetics, 2006, 113: 885-894.
[15]Xie X B, Jin F X, Song M H, Sun J P, Hwang H G, Kim Y G, Ahn S N, McCouch S R. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an O. sative × O. rufipogon cross. Theoretical and Applied Genetics, 2008, 116: 613-622.
[16]Shan J X, Zhu M Z, Shi M, Gao J P, Lin H X. Fine mapping and candidate gene analysis of spd6,responsible for small panicle and dwarfness in wild rice ( Oryza rufipogon Griff. ). Theoretical and Applied Genetics, 2009, 119: 827 -836.
[17]Chen C, Chen H, Shan J X, Zhu M Z, Shi M, Gao J P, Lin H X. Genetic and physiological analysis of a novel type of interspecific hybrid weakness in rice. Molecular Plant, 2013, 6: 716-728.
[18]傅雪琳, 卢永根, 刘向东, 李金泉. 利用种间杂交途径向栽培稻转移非AA组野生稻有利基因的研究进展. 中国水稻科学, 2007, 21(6): 559-566.
Fu X L, Lu Y G, Liu X D, Li J Q. Progress on transferring elite genes from non-AA genome wild rice into Oryza sativa through interspecific hybridization. Chinese Journal of Science, 2007, 21(6): 559-566. (in Chinese)
[19]钟代彬, 罗利军, 应存山. 野生稻有利基因转移研究进展. 中国水稻科学, 2000, 14(2): 103-106.
Zhong D B, Luo L J, Ying C S. Advances on transferring elite gene from wild rice species into cultivated rice. Chinese Journal of Science, 2000, 14(2): 103-106. (in Chinese)
[20]杨德卫, 曾美娟, 卢礼斌, 叶宁, 刘成德, 郑向华, 叶新福. 一个水稻矮秆突变体的遗传分析及基因定位. 植物学报, 2011, 46(6): 617-624.
Yang D W, Zeng M J, Lu L B, Ye N, Liu C D, Zheng X H, Ye X F. Genetic analysis and mapping of rice (Oryza sativa L.) DS1 mutant. Chinese Bulletin of Botany, 2011, 46(6): 617-624. (in Chinese)
[21]杨空松, 贺浩华, 陈小荣. 野生稻有利基因的挖掘利用及研究进展. 种子, 2005, 24(12): 92-95.
Yang K S, He H H, Chen X Y. Research advance in the utilization of excellent resource of wild rice. Seed, 2005, 24(12): 92-95. (in Chinese)
[22]张顺堂, 陈立云, 张桂莲. 野生稻种质资源优异基因定位和利用的研究进展. 安徽农业科学, 2008, 36(3): 933-935.
Zhang S T, Chen L Y, Zhang G L. Research advance in the gene mapping and utilization of excellent resource of wild rice. Journal of Anhui Agircultural Sciences, 2008, 36(3): 933-935. (in Chinese) |