Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Asset specificity and farmers’ intergenerational succession willingness of apple management
ZHANG Qiang-qiang, GAO Xi-xi, Nazir Muhammad ABDULLAHI, WANG Yue, HUO Xue-xi
2023, 22 (8): 2553-2566.   DOI: 10.1016/j.jia.2023.04.016
Abstract153)      PDF in ScienceDirect      
Understanding the factors behind apple farmers’ willingness to pass on the management of their farms to their descendants is crucial to the continuity of apple production. Due to the high specificity of the human capital, physical assets, land assets, and geographical location in apple production, this study used a binary logistic regression and a mediating effect model to explore the impact of asset specificity on farmers’ intergenerational succession willingness of apple management (FISWAM) and to examine the mediating effects of loss aversion in the impact of asset specificity on the FISWAM. The results showed that about 18.68% of the respondents expressed willingness to transfer their apple business between generations, and the FISWAM was generally weak. In addition to the negative impact of geographical location specificity (GLS), human capital specificity (HCS), physical assets specificity (PAS), and land assets specificity (LAS) can enhance the FISWAM. Loss aversion plays a partial mediating role in the impact of PAS, LAS, and GLS on the FISWAM
Reference | Related Articles | Metrics
Hole fertilization in the root zone facilitates maize yield and nitrogen utilization by mitigating potential N loss and improving mineral N accumulation
SHI Wen-xuan, ZHANG Qian, LI Lan-tao, TAN Jin-fang, XIE Ruo-han, WANG Yi-lun
2023, 22 (4): 1184-1198.   DOI: 10.1016/j.jia.2022.09.018
Abstract248)      PDF in ScienceDirect      

Reducing environmental impacts and improving N utilization are critical to ensuring food security in China.  Although root-zone fertilization has been considered an effective strategy to improve nitrogen use efficiency (NUE), the effect of controlled-release urea (CRU) applied in conjunction with normal urea in this mode is unclear.  Therefore, a 3-year field experiment was conducted using a no-N-added as a control and two fertilization modes (FF, furrow fertilization by manual trenching, i.e., farmer fertilizer practice; HF: root-zone hole fertilization by point broadcast manually) at 210 kg N ha–1 (controlled-release:normal fertilizer=5:5), along with a 1-year in-situ microplot experiment.  Maize yield, NUE and N loss were investigated under different fertilization modes.  The results showed that compared with FF, HF improved the average yield and N recovery efficiency by 8.5 and 22.3% over three years, respectively.  HF had a greater potential for application than FF treatment, which led to increases in dry matter accumulation, total N uptake, SPAD value and LAI.  In addition, HF remarkably enhanced the accumulation of 15N derived from fertilizer by 17.2% compared with FF, which in turn reduced the potential loss of 15N by 43.8%.  HF increased the accumulation of N in the tillage layer of soils at harvest for potential use in the subsequent season relative to FF.  Hence, HF could match the N requirement of summer maize, sustain yield, improve NUE and reduce environmental N loss simultaneously.  Overall, root-zone hole fertilization with blended CRU and normal urea can represent an effective and promising practice to achieve environmental integrity and food security on the North China Plain, which deserves further application and investigation.

Reference | Related Articles | Metrics
OsPPR9 encodes a DYW-type PPR protein that affects editing efficiency of multiple RNA editing sites and is essential for chloroplast development
CHEN Chang-zhao, WANG Ya-Liang, HE Meng-xing, LI Zhi-wen, SHEN Lan, LI Qing, RE De-yong, HU Jiang, ZHU Li, ZHANG Guang-heng, GAO Zhen-yu, ZENG Da-li, GUO Long-biao, QIAN Qian, ZHANG Qiang
2023, 22 (4): 972-980.   DOI: 10.1016/j.jia.2022.08.026
Abstract333)      PDF in ScienceDirect      

Photosynthesis occurs mainly in chloroplasts, whose development is regulated by proteins encoded by nuclear genes.  Among them, pentapeptide repeat (PPR) proteins participate in organelle RNA editing.  Although there are more than 450 members of the PPR protein family in rice, only a few affect RNA editing in rice chloroplasts.  Gene editing technology has created new rice germplasm and mutants, which could be used for rice breeding and gene function study.  This study evaluated the functions of OsPPR9 in chloroplast RNA editing in rice.  The osppr9 mutants were obtained by CRISPR/Cas9, which showed yellowing leaves and a lethal phenotype, with suppressed expression of genes associated with chloroplast development and accumulation of photosynthetic-related proteins.  In addition, loss of OsPPR9 protein function reduces the editing efficiency of rps8-C182, rpoC2-C4106, rps14-C80, and ndhB-C611 RNA editing sites, which affects chloroplast growth and development in rice.  Our data showed that OsPPR9 is highly expressed in rice leaves and encodes a DYW-PPR protein localized in chloroplasts.  Besides, the OsPPR9 protein was shown to interact with OsMORF2 and OsMORF9.  Together, our findings provide insights into the role of the PPR protein in regulating chloroplast development in rice. 

Reference | Related Articles | Metrics
A multiplex real-time PCR assay for simultaneous detection of classical swine fever virus, African swine fever virus and atypical porcine pestivirus
SONG Xiang-peng, XIA Ying-ju, XU Lu, ZHAO Jun-jie, WANG Zhen, ZHAO Qi-zu, LIU Ye-bing, ZHANG Qian-yi, WANG Qin
2023, 22 (2): 559-567.   DOI: 10.1016/j.jia.2022.08.115
Abstract211)      PDF in ScienceDirect      

With the implementation of the C-strain vaccine, classical swine fever (CSF) has been under control in China, which is currently in a chronic atypical epidemic situation.  African swine fever (ASF) emerged in China in 2018 and spread quickly across the country. It is presently occurring sporadically due to the lack of commercial vaccines and farmers’ increased awareness of biosafety.  Atypical porcine pestivirus (APPV) was first detected in Guangdong Province, China, in 2016, which mainly harms piglets and has a local epidemic situation in southern China.  These three diseases have similar clinical symptoms in pig herds, which cause considerable losses to the pig industry.  They are difficult to be distinguished only by clinical diagnosis.  Therefore, developing an early and accurate simultaneous detection and differential diagnosis of the diseases induced by these viruses is essential.  In this study, three pairs of specific primers and Taq-man probes were designed from highly conserved genomic regions of CSFV (5´ UTR), African swine fever virus (ASFV) (B646L), and APPV (5´ UTR), followed by the optimization of reaction conditions to establish a multiplex real-time PCR detection assay.  The results showed that the method did not cross-react with other swine pathogens (porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), foot-and-mouth disease virus (FMDV), pseudorabies virus (PRV), porcine parvovirus (PPV), and bovine viral diarrhea virus BVDV).  The sensitivity results showed that CSFV, ASFV, and APPV could be detected as low as 1 copy mL–1; the repeatability results showed that the intra-assay and inter-assay coefficient of variation of ASFV, CSFV, and APPV was less than 1%.  Twenty-two virus samples were detected by the multiplex real-time PCR, compared with national standard diagnostic and patented method assay for CSF (GB/T 27540–2011), ASF (GB/T 18648–2020), and APPV (CN108611442A), respectively.  The sensitivity of this triple real-time PCR for CSFV, ASFV, and APPV was almost the same, and the  compliance results were the same (100%).  A total of 451 clinical samples were detected, and the results showed that the positive rates of CSFV, ASFV, and APPV were 0.22% (1/451), 1.3% (6/451), and 0% (0/451), respectively.  This assay provides a valuale tool for rapid detection and accurate diagnosis of CSFV, ASFV, and APPV.

Reference | Related Articles | Metrics
SNP-based identification of QTLs for thousand-grain weight and related traits in wheat 8762/Keyi 5214 DH lines
HUANG Feng, LI Xuan-shuang, DU Xiao-yu, LI Shun-cheng, LI Nan-nan, LÜ Yong-jun, ZOU Shao-kui, ZHANG Qian, WANG Li-na, NI Zhong-fu, HAN Yu-lin, XING Jie-wen
2023, 22 (10): 2949-2960.   DOI: 10.1016/j.jia.2023.03.004
Abstract312)      PDF in ScienceDirect      

As important yield-related traits, thousand-grain weight (TGW), grain number per spike (GNS) and grain weight per spike (GWS) are crucial components of wheat production.  To dissect their underlying genetic basis, a double haploid (DH) population comprised of 198 lines derived from 8762/Keyi 5214 was constructed.  We then used genechip to genotype the DH population and integrated the yield-related traits TGW, GNS and GWS for QTL mapping.  Finally, we obtained a total of 18 942 polymorphic SNP markers and identified 41 crucial QTLs for these traits.  Three stable QTLs for TGW were identified on chromosomes 2D (QTgw-2D.3 and QTgw-2D.4) and 6A (QTgw-6A.1), with additive alleles all from the parent 8762, explaining 4.81–18.67% of the phenotypic variations.  Five stable QTLs for GNS on chromosomes 3D, 5B, 5D and 6A were identified.  QGns-5D.1 was from parent 8762, while the other four QTLs were from parent Keyi 5214, explaining 5.89–7.08% of the GNS phenotypic variations.  In addition, a stable GWS genetic locus QGws-4A.3 was detected from the parent 8762, which explained 6.08–6.14% of the phenotypic variations.  To utilize the identified QTLs, we developed STARP markers for four important QTLs, Tgw2D.3-2, Tgw2D.4-1, Tgw6A.1 and Gns3D.1.  Our results provide important basic resources and references for the identification and cloning of genes related to TGW, GNS and GWS in wheat.

Reference | Related Articles | Metrics
Characterization of laccase gene StLAC6 involved in the pathogenicity and peroxisome function in Setosphaeria turcica
LIU Ning, ZHANG Qian-qian, JIA Hui, ZHAO Bin, ZHU Zi-ping , CAO Zhi-yan, DONG Jin-gao
2022, 21 (7): 2019-2030.   DOI: 10.1016/S2095-3119(21)63855-8
Abstract312)      PDF in ScienceDirect      

Laccases, as a kind of multicopper oxidase, play an important role in pigment synthesis and growth in fungi and are involved in their interactions with host plants.  In Setosphaeria turcica, 9 laccase-like multicopper oxidases have been identified, and StLAC2 is involved in the synthesis of the melanin that accumulates in the cell wall.  The function of another major laccase gene, StLAC6, was studied here.  The knockout of StLAC6 had no effect on the growth, morphology or invasion ability of S. turcica, but the morphology and function of peroxisomes of knockout mutants were abnormal.  The knockout of the StLAC6 gene resulted in increased contents of phenolic compounds and melanin and the sensitivity to fungicides increased compared with wild type strains.  In the mutants of StLAC6, there is a significant change of the expression levels of other laccase genes.  This study provides a new insight into laccase functions and the relationship of the laccase gene family in plant pathogenic fungi.   

Reference | Related Articles | Metrics
Utilizing comprehensive decision analysis methods to determine an optimal planting pattern and nitrogen application for winter oilseed rape
DU Ya-dan, CUI Bing-jing, ZHANG Qian, SUN Jun, WANG Zhen, NIU Wen-quan
2020, 19 (9): 2229-2238.   DOI: 10.1016/S2095-3119(19)62870-4
Abstract115)      PDF in ScienceDirect      
Oilseed rape is one of the most important oil crops globally.  Attaining the appropriate cultivation method (planting pattern and nitrogen level) is necessary to achieve high yield, quality and resource utilization efficiency.  However, the optimal method for oilseed rape varies across countries and regions.  The objective of the present study was to determine an appropriate cultivation method, including planting pattern and nitrogen application, for winter oilseed rape in northwestern China.  Two planting patterns: ridge film mulching and furrow planting (RFMF) and flat planting (FP), and six nitrogen (N) amounts: 0 (N0), 60 (N60), 120 (N120), 180 (N180), 240 (N240), and 300 (N300) kg N ha–1 were applied across three growing seasons (2014–2017).  Three comprehensive decision analysis methods: principal component analysis, grey correlation degree analysis and the combined entropy weight and dynamic technique for order preference by similarity to ideal solution method were used to evaluate the growth and physiological indicators, nutrient uptake, yield, quality, evapotranspiration, and water use efficiency of winter oilseed rape.  Planting pattern, nitrogen amount and their interaction significantly affected the indicators aforementioned.  The RFMF pattern significantly increased all indicators over the FP pattern.  Application of N also markedly increased all the indicators except for seed oil content, but the yield, oil production and water use efficiency were decreased when N fertilizer exceeded 180 kg N ha–1 under FP and 240 kg N ha–1 under RFFM.  The evaluation results of the three comprehensive decision analysis methods indicated that RFMF planting pattern with 240 kg N ha–1 is an appropriate cultivation method for winter oilseed rape in northwestern China.  These findings are of vital significance to maximize yield, optimize quality and improve resource use efficiencies of winter oilseed rape.
 
Reference | Related Articles | Metrics
Multivariate analysis between meteorological factor and fruit quality of Fuji apple at different locations in China
ZHANG Qiang, ZHOU Bei-bei, LI Min-ji, WEI Qin-ping, HAN Zhen-hai
2018, 17 (06): 1338-1347.   DOI: 10.1016/S2095-3119(17)61826-4
Abstract453)      PDF in ScienceDirect      
China has the largest apple planting area and total yield in the world, and the Fuji apple is the major cultivar, accounting for more than 70% of apple planting acreage in China.  Apple qualities are affected by meteorological conditions, soil types, nutrient content of soil, and management practices.  Meteorological factors, such as light, temperature and moisture are key environmental conditions affecting apple quality that are difficult to regulate and control.  This study was performed to determine the effect of meteorological factors on the qualities of Fuji apple and to provide evidence for a reasonable regional layout and planting of Fuji apple in China.  Fruit samples of Fuji apple and meteorological data were investigated from 153 commercial Fuji apple orchards located in 51 counties of 11 regions in China from 2010 to 2011.  Partial least-squares regression and linear programming were used to analyze the effect model and impact weight of meteorological factors on fruit quality, to determine the major meteorological factors influencing fruit quality attributes, and to establish a regression equation to optimize meteorological factors for high-quality Fuji apples.  Results showed relationships between fruit quality attributes and meteorological factors among the various apple producing counties in China.  The mean, minimum, and maximum temperatures from April to October had the highest positive effects on fruit qualities in model effect loadings and weights, followed by the mean annual temperature and the sunshine percentage, the temperature difference between day and night, and the total precipitation for the same period.  In contrast, annual total precipitation and relative humidity from April to October had negative effects on fruit quality.  The meteorological factors exhibited distinct effects on the different fruit quality attributes.  Soluble solid content was affected from the high to the low row preface by annual total precipitation, the minimum temperature from April to October, the mean temperature from April to October, the temperature difference between day and night, and the mean annual temperature.  The regression equation showed that the optimum meteorological factors on fruit quality were the mean annual temperature of 5.5–18°C and the annual total precipitation of 602–1 121 mm for the whole year, and the mean temperature of 13.3–19.6°C, the minimum temperature of 7.8–18.5°C, the maximum temperature of 19.5°C, the temperature difference of 13.7°C between day and night, the total precipitation of 227 mm, the relative humidity of 57.5–84.0%, and the sunshine percentage of 36.5–70.0% during the growing period (from April to October).
Reference | Related Articles | Metrics
Characterization of salt tolerance and Fusarium wilt resistance of a sweetpotato mutant
ZHANG Huan, ZHANG Qian, WANG Yan-nan, LI Yan, ZHAI Hong, LIU Qing-chang, HE Shao-zhen
2017, 16 (09): 1946-1955.   DOI: 10.1016/S2095-3119(16)61519-8
Abstract720)      PDF in ScienceDirect      
   The variant LM1 was previously obtained using embryogenic cell suspension cultures of sweetpotato variety Lizixiang by gamma-ray induced mutation, and then its characteristics were stably inherited through six clonal generations, thus this mutant was named LM1. In this study, systematic characterization of salt tolerance and Fusarium wilt resistance were performed between Lizixiang and mutant LM1. LM1 exhibited significantly higher salt tolerance compared to Lizixiang. The content of proline and activities of superoxide dismutase (SOD) and photosynthesis were significantly increased, while malonaldehyde (MDA) and H2O2 contents were significantly decreased compared to that of Lizixiang under salt stress. The inoculation test with Fusarium wilt showed that its Fusarium wilt resistance was also improved. The lignin, total phenolic, jasmonic acid (JA) contents and SOD activity were significantly higher, while H2O2 content was significantly lower in LM1 than that in Lizixiang. The expression level of salt stress-responsive and disease resistance-related genes was significantly higher in LM1 than that in Lizixiang under salt and Fusarium wilt stresses, respectively. This result provides a novel and valuable material for improving the salt tolerance and Fusarium wilt resistance of sweetpotato.
Reference | Related Articles | Metrics
Mapping of the heading date gene HdAey2280 in Aegilops tauschii
LIU Guo-xiang, ZHANG Li-chao, XIA Chuan, JIA Ji-zeng, ZHANG Jun-cheng, ZHANG Qiang, DONG Chun-hao, KONG Xiu-ying, LIU Xu
2016, 15 (12): 2719-2725.   DOI: 10.1016/S2095-3119(15)61291-6
Abstract1016)      PDF in ScienceDirect      
    An optimum heading date is essential for sustainable crop productivity and ensuring high yields. In the present study, F2:3 populations were generated by crossing an early-heading accession, Y2280, with a late-heading accession, Y2282. The heading dates of the F2 and F3 populations were investigated in a field study. Using publicly available simple sequence repeat (SSR) markers, the early heading date gene HdAey2280 was mapped onto Aegilops tauschii chromosome 7DS between the flanking markers wmc438 and barc126 at distances of 15 and 9.1 cM, respectively. Further analysis indicated that HdAey2280 is a novel heading date gene. New SSR markers were developed based on the Ae. tauschii draft genome sequence, resulting in four new markers that were linked to the heading date gene HdAey2280. The closest distance of these markers was 1.9 cM away from the gene. The results collected in this study will serve as a framework for map-based cloning and marker-assisted selection in wheat breeding programs in the future.
Reference | Related Articles | Metrics
Dwarfing apple rootstock responses to elevated temperatures: A study on plant physiological features and transcription level of related genes
ZHOU Bei-bei, SUN Jian, LIU Song-zhong, JIN Wan-mei, ZHANG Qiang, WEI Qin-ping
2016, 15 (05): 1025-1033.   DOI: 10.1016/S2095-3119(15)61298-9
Abstract1247)      PDF in ScienceDirect      
  The aim of this study was to investigate the impact of heat stress on physiological features, together with endogenous hormones and the transcription level of related genes, to estimate the heat resistance ability and stress injury mechanism of different dwarfig apple rootstocks. Among the six rootstocks, the rootstocks of native Shao series (SH series) showed better heat stress resistance than those of Budagovski 9 (B9), Cornell-Geneva 24 (CG24), and Malling 26 (M26) from abroad. Among SH series rootstocks, SH1 and SH6 showed higher heat stress resistance than SH40. M26 demonstrated the lowest adaption ability to heat stress, showing higher leaf conductivity and lower liquid water content (LWC) with the increase in temperature. Heat stress also resulted in the suppression of photosynthesis, which showed no signifiant restoration after 7-day recovery. It should be noted that although a higher temperature led to a lower LWC and photosynthetic effiiency (Pn ) of CG24, there was no signifiant increase in leaf conductivity, and 7 days after the treatment, the Pn of CG24 recovered. The extremely high temperature tolerance of SH series rootstocks could be related to the greater osmotic adjustment (OA), which was reflcted by smaller reductions in leaf relative water content (RWC) and higher turgor potentials and leaf gas exchange compared with the other rootstocks. Determination of hormones indicated multivariate regulation, and it is presumed that a relatively stable expression levels of functional genes under high-temperature stress is necessary for heat stress resistance of rootstocks
Reference | Related Articles | Metrics
Influence of gallic acid on porcine neutrophils phosphodiesterase 4, IL-6, TNF-α and rat arthritis model
JIANG Dai-xun, ZHANG Mei-hua, ZHANG Qian, CHEN Yi-shan, MA Wen-jing, WU Wei-peng, MU Xiang
2015, 14 (4): 758-764.   DOI: 10.1016/S2095-3119(14)60824-8
Abstract1910)      PDF in ScienceDirect      
Our previous studies showed that the anti-inflammatory effects of Paeonia lactiflora roots extract may be mediated, at least in part, through its gallic acid content, and this effect may be regulated in part by an inhibition on cAMP-phosphodiesterase (PDE). To explore the anti-inflammatory effect and mechanism, the influence of gallic acid on neutrophils PDE4 activity and expression, TNF-α and IL-6 content and rat arthritis model were further studied. PDE4 activity and gene express were calculated respectively by substrate cAMP change examined with HPLC and real-time RT-PCR. The concentration of IL-6 and TNF-α in supernatant were assayed by ELISA method. Model of rat arthritis was caused by complete Freund’s adjuvant. Results showed that gallic acid had a dose-dependent restraint on PDE4 activity of neutrophils in vitro, promoted significantly PDE4A expression (P<0.01), and had no influence on the expressions of PDE4B and 4D. However, PDE4C expression was not detected. Gallic acid could promote IL-6 release (P<0.05), and inhibit TNF-α release of neutrophils (P<0.05). The experiment in vivo showed that gallic acid had obvious restraint on local inflammation of animal model (P<0.05). Therefore, the anti-inflammatory effect of gallic acid may be mediated in part through an inhibition on PDE4 activity and further an increase of IL-6 and a decrease of TNF-α of neutrophils, and this effect seemed to have no relationship with PDE4 expression.
Reference | Related Articles | Metrics
Toxicity and binding analyses of Bacillus thuringiensis toxin Vip3A in Cry1Ac-resistant and -susceptible strains of Helicoverpa armigera (Hübner)
ZHANG Qian, CHEN Li-zhen, LU Qiong, ZHANG Yan, LIANG Ge-mei
2015, 14 (2): 347-354.   DOI: 10.1016/S2095-3119(14)60770-X
Abstract2171)      PDF in ScienceDirect      
The Bacillus thuringiensis vegetative insecticidal protein, Vip3A, represents a new family of Bt toxin and is currently applied to commercial transgenic cotton. To determine whether the Cry1Ac-resistant Helicoverpa armigera is cross-resistant to Vip3Aa protein, insecticidal activities, proteolytic activations and binding properties of Vip3Aa toxin were investigated using Cry1Ac-susceptible (96S) and Cry1Ac-resistant H. armigera strain (Cry1Ac-R). The toxicity of Vip3Aa in Cry1Ac-R slightly reduced compared with 96S, the resistance ratio was only 1.7-fold. The digestion rate of full-length Vip3Aa by gut juice extracts from 96S was little faster than that from Cry1Ac-R. Surface plasmon resonance (SPR) showed there was no significant difference between the binding affinity of Vip3Aa and BBMVs between 96S and Cry1Ac-R strains, and there was no significant competitive binding between Vip3Aa and Cry1Ac in susceptible or resistant strains. So there had little cross-resistance between Vip3Aa and Cry1Ac,Vip3A+Cry proteins maybe the suitable pyramid strategy to control H. armigera in China in the future.
Reference | Related Articles | Metrics
Effect of Partial Root-Zone Irrigating Deuterium Oxide on the Properties of Water Transportation and Distribution in Young Apple Trees
LIU Song-zhong, ZHANG Qiang, LIU Jun, SUN Jian , WEI Qin-ping
2014, 13 (6): 1268-1275.   DOI: 10.1016/S2095-3119(13)60623-1
Abstract1940)      PDF in ScienceDirect      
Partial root-zone irrigation (PRI) has been proved to be an optimal water-saving irrigation technology, however, few studies were done on water transportation and distribution under PRI. The present study was performed to investigate the water transportation and distribution among the wet and dry root-zones and the shoot using deuterium water (D2O) in 1/4 root-zone PRI experiment. It also aimed to determine and analyze the D2O relative abundance within different types of roots and shoots. The results indicated that water could be transported from roots in wet root-zone to roots in dry root-zone and shoots within 2 h after irrigation. Water transportation in roots of wet-zone was carried out by absorbing root, 1-2 mm root, 2-5 mm root, and >5 mm root progressively, while through a reverse process in three dry root-zones. In shoots, water was transported to trunk, central trunk, annual branches, shoot and leaf progressively. Thus in the young apple trees subjected to PRI, water was distributed first in the roots, including the roots in the wet and dry root-zones, to satisfy the water need of roots itself, and then transported to the shoot within hours of irrigation.
Reference | Related Articles | Metrics
Overexpression of a Cytosolic Ascorbate Peroxidase Gene, OsAPX2, Increases Salt Tolerance in Transgenic Alfalfa
ZHANG Qian, MA Cui, XUE Xin, XU Ming, LI Jing , WU Jin-xia
2014, 13 (11): 2500-2507.   DOI: 10.1016/S2095-3119(13)60691-7
Abstract1061)      PDF in ScienceDirect      
Alfalfa (Medicago sativa L.) is an important forage crop in the world and it is of great significance for the improvement of its salt tolerance. To improve salt tolerance in alfalfa, a rice ascorbate peroxidase gene (OsAPX2) was introduced into alfalfa using Agrobacterium tumefaciens-mediated transformation with marker gene bar. The different T-DNA insertions in T1 transgenic alfalfa were identified by Southern hybridization. Three independent T2 transgenic lines were selected for stress analysis and the results showed that all of them were salt tolerant compared with wild-type plants. The transgenic plants had low levels of H2O2, malondialdehyde and relative electrical conductivity under salt and drought stresses. Moreover, the contents of chlorophyll and proline, and APX activity were high in transgenic plants under salt and drought stresses. Taken together, the overexpression of OsAPX2 enhances salt tolerance in alfalfa through scavenging reactive oxygen species.
Reference | Related Articles | Metrics
Fine Mapping of qTGW3-1, a QTL for 1000-Grain Weight on Chromosome 3 in Rice
ZHANG Qiang, YAO Guo-xin, HU Guang-long, TANG Bo, ZHANG Hong-liang, LI Zi-chao
2012, 12 (6): 879-887.   DOI: 10.1016/S1671-2927(00)8610
Abstract1805)      PDF in ScienceDirect      
The QTL qTGW3-1 was located on chromosome 3 of rice (Oryza sativa L.) and associated with the 1 000-grain weight (TGW) according to the result of our earlier study. With the objective of fine mapping of this locus, we developed a F2 population consisting of 3 428 plants derived from the cross between TGW-related near isogenic line DL017 (BC3F4 generation of GSL156×Nipponbare) and the recurrent parent Nipponbare. Using six microsatellites, this QTL was delimited between RM5477 and RM6417. Markers MM1455 and MM1456 within this region were used for further mapping of this QTL. Finally, qTGW3-1 was fine-mapped into a 89-kb interval between RM5477 and MM1456, which locates in the BAC clone AC107226 harboring five putative candidate genes.
Reference | Related Articles | Metrics
Scarabaeid Larvae- and Herbicide-Resistant Transgenic Perennial Ryegrass (Lolium perenne L.) Obtained by Agrobacterium tumefaciens-Mediated Transformation of cry8Ca2, cry8Ga and bar Genes
WU Jin-xia, ZHANG Zhi-guo, ZHANG Qian, LANG Zhi-hong , SUN Xue-hui
2012, 12 (1): 53-61.   DOI: 10.1016/S1671-2927(00)8528
Abstract1541)      PDF in ScienceDirect      
Insect pest and weeds are two major problems for forage and turf grasses. In this study, scarab larvae- and herbicideresistant transgenic perennial ryegrass (Lolium perenne L.) was obtained by transforming it with cry and bar genes simultaneously via the Agrobacterium-mediated method. To optimize the callus induction and plant regeneration conditions, various concentrations of 2,4-dichlorophenoxyacetic acid and 6-benzylaminopurine were assayed. The transformation efficiencies of different Agrobacterium suspension media, used during Agrobacterium-mediated transformation, were compared. Then, plasmids of pCAMBIA3301 containing cry gene (cry8Ca2 or cry8Ga) and bar gene, driven by ubiquitin promoter, were transformed into perennial ryegrass. The transformants were generated and confirmed by both Southern hybridization analysis and Western hybridization analysis. Further, the resistance of transgenic perennial ryegrass plants to scarab larvae and herbicide were analyzed. After 30 d of co-cultivation with scarab larvae, the damage to the root system of transgenic plants was less than that of non-transgenic control plants. Additionally, the leaves of transgenic plants were resistant to Basta®, while leaves of the wild plants wilted after Basta® spraying. These results show that cry gene and bar gene were successfully transferred into perennial ryegrass by the Agrobactgerium-mediated method, and convey resistance to scarab larvae and herbicide in transgenic perennial ryegrass plants.
Reference | Related Articles | Metrics
A MicroRNA Catalog of Swine Umbilical Vein Endothelial Cells Identified by Deep Sequencing
DAI Chen, ZHANG Yan-ming, ZHANG Qian, WU Zong-song, DENG Wen, ZHANG Xu, GUO Kang-kang, TANG Qing-hai , HOU Bo
2011, 10 (9): 1467-1474.   DOI: 10.1016/S1671-2927(11)60140-5
Abstract1876)      PDF in ScienceDirect      
MicroRNAs (miRNAs) are endogenous ~22 nt RNAs that play important regulatory roles in targeting mRNAs for cleavageor translational repression. Despite the discovery of increasing numbers of human and mouse miRNAs, little is knownabout miRNAs from pig. In this study, we sought to extend the repertoire of porcine small regulatory RNAs using Solexasequencing. We sequenced a library of small RNAs prepared from immortalized swine umbilical vein endothelial cells(SUVECs). We produced over 13.6 million short sequence reads, of which 8 547 658 perfectly mapped to the pig genome.A bioinformatics pipeline was used to identify authentic mature miRNA sequences. We identified 154 porcine miRNAgenes, among which 146 were conserved across species, and 8 were pig-specific miRNA genes. The 146 miRNA genesencoded 116 conserved mature miRNAs and 66 miRNA*. The 8 pig-specific miRNA genes encoded 4 mature miRNAs.Four potential novel miRNAs were identified. The secondary structures of the 154 miRNA genes were predicted; 13miRNAs have 2 structures, and miR-9 and miR-199 have 4 and 3 structures, respectively. 36 miRNAs were organized into19 compact clusters. miR-206, miR-21 and miR-378 were the relatively highly expressed miRNAs. In conclusion, Solexasequencing allowed the successful discovery of known and novel porcine miRNAs with high accuracy and efficiency.Furthermore, our results supply new data to the somewhat insufficient pig miRBase, and are useful for investigatingfeatures of the blood-brain barrier, vascular diseases and inflammation.
Reference | Related Articles | Metrics