导航切换
Journal of Integrative Agriculture
JIA Home
About JIA
Description
Video introduction
Editor-in-chief
Editorial board
Guideline of JIA editorial board
Editorial board
Youth Editorial Board
For authors
Instruction for authors
Title page
Copyright agreement
Templates
Endnote
Subscription
Contact
Journals
Publication Years
Keywords
Search within results
(((ZHANG Huai-zhi[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
Title
Author
Institution
Keyword
Abstract
PACS
DOI
Please wait a minute...
For Selected:
Download Citations
EndNote
Ris
BibTeX
Toggle Thumbnails
Select
Long-term straw addition promotes moderately labile phosphorus formation, decreasing phosphorus downward migration and loss in greenhouse vegetable soil
ZHANG Yin-Jie, GAO Wei, LUAN Hao-an, TANG Ji-wei, LI Ruo-nan, LI Ming-Yue, ZHANG Huai-zhi, HUANG Shao-wen
2022, 21 (
9
): 2734-2749. DOI:
10.1016/j.jia.2022.07.028
Abstract
(
213
)
PDF in ScienceDirect
Phosphorus (P) leaching is a major problem in greenhouse vegetable production with excessive P fertilizer application. Substitution of inorganic P fertilizer with organic fertilizer is considered a potential strategy to reduce leaching, but the effect of organic material addition on soil P transformation and leaching loss remains unclear. The X-ray absorption near-edge structure (XANES) spectroscopy technique can determine P speciation at the molecular level. Here, we integrated XANES and chemical methods to explore P speciation and transformation in a 10-year field experiment with four treatments: 100% chemical fertilizer (4CN), 50% chemical N and 50% manure N (2CN+2MN), 50% chemical N and 50% straw N (2CN+2SN), and 50% chemical N and 25% manure N plus 25% straw N (2CN+2MSN). Compared with the 4CN treatment, the organic substitution treatments increased the content of labile P by 13.7–54.2% in the 0–40 cm soil layers, with newberyite and brushite being the main constituents of the labile P. Organic substitution treatments decreased the stable P content; hydroxyapatite was the main species and showed an increasing trend with increasing soil depth. Straw addition (2CN+2SN and 2CN+2MSN) resulted in a higher moderately labile P content and a lower labile P content in the subsoil (60–100 cm). Moreover, straw addition significantly reduced the concentrations and amounts of total P, dissolved inorganic P (DIP), and particulate P in leachate. DIP was the main form transferred by leaching and co-migrated with dissolved organic carbon. Partial least squares path modeling revealed that straw addition decreased P leaching by decreasing labile P and increasing moderately labile P in the subsoil. Overall, straw addition is beneficial for developing sustainable P management strategies due to increasing labile P in the upper soil layer for the utilization of plants, and decreasing P migration and leaching.
Reference
|
Related Articles
|
Metrics
Select
Effects of a decade of organic fertilizer substitution on vegetable yield and soil phosphorus pools, phosphatase activities, and the microbial community in a greenhouse vegetable production system
ZHANG Yin-Jie, GAO Wei, LUAN Hao-an, TAND Ji-wei, LI Ruo-nan, LI Ming-Yue, ZHANG Huai-zhi, HUANG Shao-wen
2022, 21 (
7
): 2119-2133. DOI:
10.1016/S2095-3119(21)63715-2
Abstract
(
224
)
PDF in ScienceDirect
Partial substitution of chemical fertilizers by organic amendments is adopted widely for promoting the availability of soil phosphorus (P) in agricultural production. However, few studies have comprehensively evaluated the effects of long-term organic substitution on soil P availability and microbial activity in greenhouse vegetable fields. A 10-year (2009–2019) field experiment was carried out to investigate the impacts of organic fertilizer substitution on soil P pools, phosphatase activities and the microbial community, and identify factors that regulate these soil P transformation characteristics. Four treatments included 100% chemical N fertilizer (4CN), 50% substitution of chemical N by manure (2CN+2MN), straw (2CN+2SN), and combined manure with straw (2CN+1MN+1SN). Compared with the 4CN treatment, organic substitution treatments increased celery and tomato yields by 6.9−13.8% and 8.6−18.1%, respectively, with the highest yields being in the 2CN+1MN+1SN treatment. After 10 years of fertilization, organic substitution treatments reduced total P and inorganic P accumulation, increased the concentrations of available P, organic P, and microbial biomass P, and promoted phosphatase activities (alkaline and acid phosphomonoesterase, phosphodiesterase, and phytase) and microbial growth in comparison with the 4CN treatment. Further, organic substitution treatments significantly increased soil C/P, and the partial least squares path model (PLS-PM) revealed that the soil C/P ratio directly and significantly affected phosphatase activities and the microbial biomass and positively influenced soil P pools and vegetable yield. Partial least squares (PLS) regression demonstrated that arbuscular mycorrhizal fungi positively affected phosphatase activities. Our results suggest that organic fertilizer substitution can promote soil P transformation and availability. Combining manure with straw was more effective than applying these materials separately for developing sustainable P management practices.
Reference
|
Related Articles
|
Metrics
Select
Changes in organic C stability within soil aggregates under different fertilization patterns in a greenhouse vegetable field
LUAN Hao-an, YUAN Shuo, GAO Wei, TANG Ji-wei, LI Ruo-nan, ZHANG Huai-zhi, HUANG Shao-wen
2021, 20 (
10
): 2758-2771. DOI:
10.1016/S2095-3119(21)63646-8
Abstract
(
131
)
PDF in ScienceDirect
Knowledge of the stability of soil organic C (SOC) is vital for assessing SOC dynamics and cycling in agroecosystems. Studies have documented the regulatory effect of fertilization on SOC stability in bulk soils. However, how fertilization alters organic C stability at the aggregate scale in agroecosystems remains largely unclear. This study aimed to appraise the changes of organic C stability within soil aggregates after eight years of fertilization (chemical vs. organic fertilization) in a greenhouse vegetable field in Tianjin, China. Changes in the stability of organic C in soil aggregates were evaluated by four methods, i.e., the modified Walkley-Black method (chemical method),
13
C NMR spectroscopy (spectroscopic method), extracellular enzyme assay (biological method), and thermogravimetric analysis (thermogravimetric method). The aggregates were isolated and separated by a wet-sieving method into four fractions: large macroaggregates
(>2 mm), small macroaggregates (0.25–2 mm), microaggregates (0.053–0.25 mm), and silt/clay fractions (<0.053 mm). The results showed that organic amendments increased the organic C content and reduced the chemical, spectroscopic, thermogravimetric, and biological stability of organic C within soil aggregates relative to chemical fertilization alone. Within soil aggregates, the content of organic C was the highest in microaggregates and decreased in the order microaggregates>macroaggregates>silt/clay fractions. Meanwhile, organic C spectroscopic, thermogravimetric, and biological stability were the highest in silt/clay fractions, followed by macroaggregates and microaggregates. Moreover, the modified Walkley-Black method was not suitable for interpreting organic C stability at the aggregate scale due to the weak correlation between organic C chemical properties and other stability characteristics within the soil aggregates. These findings provide scientific insights at the aggregate scale into the changes of organic C properties under fertilization in greenhouse vegetable fields in China.
Reference
|
Related Articles
|
Metrics
Select
Aggregate-associated changes in nutrient properties, microbial community and functions in a greenhouse vegetable field based on an eight-year fertilization experiment of China
LUAN Hao-an, GAO Wei, TANG Ji-wei, LI Ruo-nan, LI Ming-yue, ZHANG Huai-zhi, CHEN Xin-ping, Dainius MASILIUNAS, HUANG Shao-wen
2020, 19 (
10
): 2530-2548. DOI:
10.1016/S2095-3119(20)63269-5
Abstract
(
149
)
PDF in ScienceDirect
Soil aggregation, microbial community, and functions (i.e., extracellular enzyme activities; EEAs) are critical factors affecting soil C dynamics and nutrient cycling. We assessed soil aggregate distribution, stability, nutrients, and microbial characteristics within >2, 0.25–2, 0.053–0.25, and <0.053 mm aggregates, based on an eight-year field experiment in a greenhouse vegetable field in China. The field experiment includes four treatments: 100% N fertilizer (CF), 50% substitution of N fertilizer with manure (M), straw (S), and manure plus straw (MS). The amounts of nutrient (N, P
2
O
5
, and K
2
O) input were equal in each treatment. Results showed higher values of mean weight diameter in organic-amended soils (M, MS, and S, 2.43–2.97) vs. CF-amended soils (1.99). Relative to CF treatment, organic amendments had positive effects on nutrient (i.e., available N, P, and soil organic C (SOC)) conditions, microbial (e.g., bacterial and fungal) growth, and EEAs in the >0.053 mm aggregates, but not in the <0.053 mm aggregates. The 0.25–0.053 mm aggregates exhibited better nutrient conditions and hydrolytic activity, while the <0.053 mm aggregates had poor nutrient conditions and higher oxidative activity among aggregates, per SOC, available N, available P, and a series of enzyme activities. These results indicated that the 0.25–0.053 mm (<0.053 mm) aggregates provide suitable microhabitats for hydrolytic (oxidative) activity. Interestingly, we found that hydrolytic and oxidative activities were mainly impacted by fertilization (58.5%,
P
<0.01) and aggregate fractions (50.5%, P<0.01), respectively. The hydrolytic and oxidative activities were significantly (
P
<0.01) associated with nutrients (SOC and available N) and pH, electrical conductivity, respectively. Furthermore, SOC, available N, and available P closely (
P
<0.05) affected microbial communities within >0.25, 0.25–0.053, and <0.053 mm aggregates, respectively. These findings provide several insights into microbial characteristics within aggregates under different fertilization modes in the greenhouse vegetable production system in China.
Reference
|
Related Articles
|
Metrics
Select
Molecular mapping of
YrTZ2
, a stripe rust resistance gene in wild emmer accession TZ-2 and its comparative analyses with
Aegilops
tauschii
WANG Zhen-zhong, XIE Jing-zhong, GUO Li, ZHANG De-yun, LI Gen-qiao, FANG Ti-lin, CHEN Yongxing, LI Jun, WU Qiu-hong, LU Ping, LI Miao-miao, WU Hai-bin, ZHANG Huai-zhi, ZHANG Yan, YANG Wu-yun, LUO Ming
2018, 17 (
06
): 1267-1275. DOI:
10.1016/S2095-3119(17)61846-X
Abstract
(
475
)
PDF in ScienceDirect
Wheat stripe rust, caused by
Puccinia striiformis
f. sp.
tritici
(Pst), is a devastating disease that can cause severe yield losses. Identification and utilization of stripe rust resistance genes are essential for effective breeding against the disease. Wild emmer accession TZ-2, originally collected from Mount Hermon, Israel, confers near-immunity resistance against several prevailing Pst races in China. A set of 200 F
6:7
recombinant inbred lines (RILs) derived from a cross between susceptible durum wheat cultivar Langdon and TZ-2 was used for stripe rust evaluation. Genetic analysis indicated that the stripe rust resistance of TZ-2 to Pst race CYR34 was controlled by a single dominant gene, temporarily designated
YrTZ2
. Through bulked segregant analysis (BSA) with SSR markers,
YrTZ2
was located on chromosome arm 1BS flanked by
Xwmc230
and
Xgwm413
with genetic distance of 0.8 cM (distal) and 0.3 cM (proximal), respectively. By applying wheat 90K iSelect SNP genotyping assay, 11 polymorphic loci (consisting of 250 SNP markers) closely linked to
YrTZ2
were identified.
YrTZ2
was further delimited into a 0.8-cM genetic interval between SNP marker
IWB19368
and SSR marker
Xgwm413
, and co-segregated with SNP marker
IWB28744
(co-segregated with 28 SNP). Comparative genomics analyses revealed high level of collinearity between the
YrTZ2
genomic region and the orthologous region of
Aegilops
tauschii
1DS. The genomic region between loci
IWB19368
and
IWB31649
harboring
YrTZ2
is orthologous to a 24.5-Mb genomic region between AT1D0112 and AT1D0150, spanning 15 contigs on chromosome 1DS. The genetic and comparative maps of
YrTZ2
provide a framework for map-based cloning and marker-assisted selection of
YrTZ2
.
Reference
|
Related Articles
|
Metrics
Select
Fine mapping of powdery mildew resistance gene
PmTm4
in wheat using comparative genomics
XIE Jing-zhong, WANG Li-li, WANG Yong, ZHANG Huai-zhi, ZHOU Sheng-hui, WU Qiu-hong, CHEN Yong-xing, WANG Zhen-zhong, WANG Guo-xin, ZHANG De-yun, ZHANG Yan, HU Tie-zhu, LIU Zhi-yong
2017, 16 (
03
): 540-550. DOI:
10.1016/S2095-3119(16)61377-1
Abstract
(
1388
)
PDF in ScienceDirect
Powdery mildew, caused by
Blumeria graminis
f. sp.
tritici
, is one of the most severe wheat diseases. Mining powdery mildew resistance genes in wheat cultivars and their appliance in breeding program is a promising way to control this disease. Genetic analysis revealed that a single dominant resistance gene named
PmTm4
originated from Chinese wheat line Tangmai 4 confers resistance to prevailing isolates of
B. graminis
f. sp.
tritici
isolate E09. Detailed comparative genomics analyses helped to develop closely linked markers to
PmTm4
and a fine genetic map was constructed using large F
2
population, in which
PmTm4
was located into a 0.66-cM genetic interval. The orthologous subgenome region of
PmTm4
in
Aegilops tauschii
was identified, and two resistance gene analogs (RGA) were characterized from the corresponding sequence scaffolds of
Ae. tauschii
draft assembly. The closely linked markers and identified
Ae. tauschii
orthologs in the mapping interval provide an entry point for chromosome landing and map-based cloning of
PmTm4
.
Reference
|
Related Articles
|
Metrics